The accessibility property of expansive geodesic flows without conjugate points

2008 ◽  
Vol 28 (1) ◽  
pp. 229-244
Author(s):  
RAFAEL OSWALDO RUGGIERO

AbstractLet (M,g) be a compact, smooth Riemannian manifold without conjugate points whose geodesic flow is expansive. We show that the geodesic flow of (M,g) has the accessibility property, namely, given two pointsθ1,θ2in the unit tangent bundle, there exists a continuous path joiningθ1,θ2formed by the union of a finite number of continuous curves, each of which is contained either in a strong stable set or in a strong unstable set of the dynamics. Since expansive geodesic flows of compact surfaces have no conjugate points, the accessibility property holds for every two-dimensional expansive geodesic flow.

1997 ◽  
Vol 17 (1) ◽  
pp. 211-225 ◽  
Author(s):  
RAFAEL O. RUGGIERO

Let $M$ be a compact Riemannian manifold with no conjugate points such that its geodesic flow is expansive. We show that there exists a local product structure in the unit tangent bundle of the manifold which is invariant under the geodesic flow. In particular, we have that the set of closed geodesics is dense and that the flow is topologically transitive.


1996 ◽  
Vol 16 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Rafael Oswaldo Ruggierot

AbstractWe show that near the geodesic flow of a compact Riemannian manifold with no conjugate points which is expansive, every expansive geodesic flow has no conjugate points. We also prove that in the above hypotheses the geodesic flow istopologically stable.


1991 ◽  
Vol 11 (4) ◽  
pp. 653-686 ◽  
Author(s):  
Renato Feres

AbstractWe improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C∞ Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow φt: V → V on the unit tangent bundle V of M is C∞. Assume, moreover, that either (a) the sectional curvature of M satisfies −4 < K ≤ −1 or (b) the dimension of M is odd. Then the geodesic flow of M is C∞-isomorphic (i.e., conjugate under a C∞ diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M ≡ 2(mod 4). Then either the above conclusion holds or φ1, is C∞-isomorphic to the flow , on the quotient Γ\, where Γ is a subgroup of a real Lie group ⊂ Diffeo () with Lie algebra is the geodesic flow on the unit tangent bundle of the complex hyperbolic space ℂHm, m = ½ dim M.


1982 ◽  
Vol 2 (3-4) ◽  
pp. 513-524 ◽  
Author(s):  
P. Sarnak

AbstractLet M be a compact Riemannian manifold of (variable) negative curvature. Let h be the topological entropy and hμ the measure entropy for the geodesic flow on the unit tangent bundle to M. Estimates for h and hμ in terms of the ‘geometry’ of M are derived. Connections with and applications to other geometric questions are discussed.


1993 ◽  
Vol 13 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Miguel Paternain

AbstractWe prove the following result: if M is a compact Riemannian surface whose geodesic flow is expansive, then M has no conjugate points. This result and the techniques of E. Ghys imply that all expansive geodesic flows of a compact surface are topologically equivalent.


1997 ◽  
Vol 17 (5) ◽  
pp. 1043-1059 ◽  
Author(s):  
KEITH BURNS ◽  
GABRIEL P. PATERNAIN

Let $M$ be a compact $C^{\infty}$ Riemannian manifold. Given $p$ and $q$ in $M$ and $T>0$, define $n_{T}(p,q)$ as the number of geodesic segments joining $p$ and $q$ with length $\leq T$. Mañé showed in [7] that \[ \lim_{T\rightarrow \infty}\frac{1}{T}\log \int_{M\times M}n_{T}(p,q)\,dp\,dq = h_{\rm top}, \] where $h_{\rm top}$ denotes the topological entropy of the geodesic flow of $M$.In this paper we exhibit an open set of metrics on the two-sphere for which \[ \limsup_{T\rightarrow\infty}\frac{1}{T}\log n_{T}(p,q)< h_{\rm top}, \] for a positive measure set of $(p,q)\in M\times M$. This answers in the negative questions raised by Mañé in [7].


2016 ◽  
Vol 38 (3) ◽  
pp. 940-960
Author(s):  
PIERRE DEHORNOY ◽  
TALI PINSKY

We construct a template with two ribbons that describes the topology of all periodic orbits of the geodesic flow on the unit tangent bundle to any sphere with three cone points with hyperbolic metric. The construction relies on the existence of a particular coding with two letters for the geodesics on these orbifolds.


2013 ◽  
Vol 34 (3) ◽  
pp. 742-764
Author(s):  
ABDELHAMID AMROUN

AbstractUsing the works of Mañé [On the topological entropy of the geodesic flows.J. Differential Geom.45(1989), 74–93] and Paternain [Topological pressure for geodesic flows.Ann. Sci. Éc. Norm. Supér.(4)33(2000), 121–138] we study the distribution of geodesic arcs with respect to equilibrium states of the geodesic flow on a closed manifold, equipped with a$\mathcal {C}^{\infty }$Riemannian metric. We prove large-deviation lower and upper bounds and a contraction principle for the geodesic flow in the space of probability measures of the unit tangent bundle. We deduce a way of approximating equilibrium states for continuous potentials.


1988 ◽  
Vol 8 (2) ◽  
pp. 215-239 ◽  
Author(s):  
Masahiko Kanai

AbstractWe are concerned with closed C∞ riemannian manifolds of negative curvature whose geodesic flows have C∞ stable and unstable foliations. In particular, we show that the geodesic flow of such a manifold is isomorphic to that of a certain closed riemannian manifold of constant negative curvature if the dimension of the manifold is greater than two and if the sectional curvature lies between − and −1 strictly.


2014 ◽  
Vol 35 (6) ◽  
pp. 1795-1813 ◽  
Author(s):  
PIERRE DEHORNOY

We prove that the geodesic flow on the unit tangent bundle to every hyperbolic 2-orbifold that is a sphere with three or four singular points admits explicit genus-one Birkhoff sections, and we determine the associated first return maps.


Sign in / Sign up

Export Citation Format

Share Document