scholarly journals Geodesic flows on manifolds of negative curvature with smooth horospheric foliations

1991 ◽  
Vol 11 (4) ◽  
pp. 653-686 ◽  
Author(s):  
Renato Feres

AbstractWe improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C∞ Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow φt: V → V on the unit tangent bundle V of M is C∞. Assume, moreover, that either (a) the sectional curvature of M satisfies −4 < K ≤ −1 or (b) the dimension of M is odd. Then the geodesic flow of M is C∞-isomorphic (i.e., conjugate under a C∞ diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M ≡ 2(mod 4). Then either the above conclusion holds or φ1, is C∞-isomorphic to the flow , on the quotient Γ\, where Γ is a subgroup of a real Lie group ⊂ Diffeo () with Lie algebra is the geodesic flow on the unit tangent bundle of the complex hyperbolic space ℂHm, m = ½ dim M.

1988 ◽  
Vol 8 (2) ◽  
pp. 215-239 ◽  
Author(s):  
Masahiko Kanai

AbstractWe are concerned with closed C∞ riemannian manifolds of negative curvature whose geodesic flows have C∞ stable and unstable foliations. In particular, we show that the geodesic flow of such a manifold is isomorphic to that of a certain closed riemannian manifold of constant negative curvature if the dimension of the manifold is greater than two and if the sectional curvature lies between − and −1 strictly.


1982 ◽  
Vol 2 (3-4) ◽  
pp. 513-524 ◽  
Author(s):  
P. Sarnak

AbstractLet M be a compact Riemannian manifold of (variable) negative curvature. Let h be the topological entropy and hμ the measure entropy for the geodesic flow on the unit tangent bundle to M. Estimates for h and hμ in terms of the ‘geometry’ of M are derived. Connections with and applications to other geometric questions are discussed.


1993 ◽  
Vol 13 (2) ◽  
pp. 335-347 ◽  
Author(s):  
Héctor Sánchez-Morgado

AbstractFried has related closed orbits of the geodesic flow of a surface S of constant negative curvature to the R-torsion for a unitary representation of the fundamental group of the unit tangent bundle T1S. In this paper we extend those results to transitive Anosov flows and 2-dimensional attractors on 3-manifolds.


1972 ◽  
Vol 24 (6) ◽  
pp. 1114-1121
Author(s):  
W. Byers

Anosov flows are a generalization of geodesic flows on the unit tangent bundles of compact manifolds of negative sectional curvature. They were introduced and are dealt with at length by Anosov in [2]. Moreover they form an important class of examples of flows satisfying Smale's axioms A and B (see [15]). In that paper Smale poses the problem of determining which manifolds admit Anosov flows. In this paper we obtain information about the fundamental groups of such manifolds. These generalize results which have been obtained for the fundamental groups of manifolds of negative curvature (see Preissmann [13], Byers [6]).


1997 ◽  
Vol 17 (1) ◽  
pp. 211-225 ◽  
Author(s):  
RAFAEL O. RUGGIERO

Let $M$ be a compact Riemannian manifold with no conjugate points such that its geodesic flow is expansive. We show that there exists a local product structure in the unit tangent bundle of the manifold which is invariant under the geodesic flow. In particular, we have that the set of closed geodesics is dense and that the flow is topologically transitive.


2001 ◽  
Vol 25 (3) ◽  
pp. 183-195 ◽  
Author(s):  
Vasile Oproiu

We obtain a Kähler Einstein structure on the tangent bundle of a Riemannian manifold of constant negative curvature. Moreover, the holomorphic sectional curvature of this Kähler Einstein structure is constant. Similar results are obtained for a tube around zero section in the tangent bundle, in the case of the Riemannian manifolds of constant positive curvature.


2016 ◽  
Vol 38 (3) ◽  
pp. 940-960
Author(s):  
PIERRE DEHORNOY ◽  
TALI PINSKY

We construct a template with two ribbons that describes the topology of all periodic orbits of the geodesic flow on the unit tangent bundle to any sphere with three cone points with hyperbolic metric. The construction relies on the existence of a particular coding with two letters for the geodesics on these orbifolds.


2008 ◽  
Vol 60 (6) ◽  
pp. 1201-1218 ◽  
Author(s):  
Eric Bahuaud ◽  
Tracey Marsh

AbstractWe consider a complete noncompact Riemannian manifold M and give conditions on a compact submanifold K ⊂ M so that the outward normal exponential map off the boundary of K is a diffeomorphism onto M\K. We use this to compactify M and show that pinched negative sectional curvature outside K implies M has a compactification with a well-defined Hölder structure independent of K. The Hölder constant depends on the ratio of the curvature pinching. This extends and generalizes a 1985 result of Anderson and Schoen.


1994 ◽  
Vol 14 (3) ◽  
pp. 493-514
Author(s):  
Ursula Hamenstädt

AbstractIt is shown that three different notions of regularity for the stable foliation on the unit tangent bundle of a compact manifold of negative curvature are equivalent. Moreover if is a time-preserving conjugacy of geodesic flows of such manifolds M, N then the Lyapunov exponents at corresponding periodic points of the flows coincide. In particular Δ also preserves the Lebesgue measure class.


1991 ◽  
Vol 02 (06) ◽  
pp. 701-709
Author(s):  
SVETLANA KATOK

In this paper we study the space of smooth functions on the unit tangent bundle SM to a compact negatively curved surface M that are eigenfunctions of the infinitesimal generator of the action of SO(2) on SM, and that have zero integrals over all periodic orbits of the geodesic flow on SM. It is proved that the space of such functions is finite dimensional. In the case of constant negative curvature a complete description of this space is obtained.


Sign in / Sign up

Export Citation Format

Share Document