Two novel approaches for unmanned underwater vehicle path planning: constrained optimisation and semi-infinite constrained optimisation

Robotica ◽  
2000 ◽  
Vol 18 (2) ◽  
pp. 123-142 ◽  
Author(s):  
Yongji Wang ◽  
David M. Lane ◽  
Gavin J. Falconer

In this paper, two novel approaches to unmanned underwater vehicle path planning are presented. The main idea of the first approach, referred to as Constrained Optimisation (CO) is to represent the free space of the workspace as a set of inequality constraints using vehicle configuration variables. The second approach converts robot path planning into a Semi-infinite Constrained Optimisation (SCO) problem. The function interpolation technique is adopted to satisfy the start and goal configuration requirements. Mathematical foundations for Constructive Solid Geometry (CSG), Boolean operations and approximation techniques are also presented to reduce the number of constraints, and to avoid local minima. The advantages of these approaches are that the mature techniques developed in optimisation theory which guarantee convergence, efficiency and numerical robustness can be directly applied to the robot path planning problem. Simulation results have been presented.

Author(s):  
C. Y. Liu ◽  
R. W. Mayne

Abstract This paper considers the problem of robot path planning by optimization methods. It focuses on the use of recursive quadratic programming (RQP) for the optimization process and presents a formulation of the three dimensional path planning problem developed for compatibility with the RQP selling. An approach 10 distance-to-contact and interference calculations appropriate for RQP is described as well as a strategy for gradient computations which are critical to applying any efficient nonlinear programming method. Symbolic computation has been used for general six degree-of-freedom transformations of the robot links and to provide analytical derivative expressions. Example problems in path planning are presented for a simple 3-D robot. One example includes adjustments in geometry and introduces the concept of integrating 3-D path planning with geometric design.


Author(s):  
Masakazu Kobayashi ◽  
Higashi Masatake

A robot path planning problem is to produce a path that connects a start configuration and a goal configuration while avoiding collision with obstacles. To obtain a path for robots with high degree of freedom of motion such as an articulated robot efficiently, sampling-based algorithms such as probabilistic roadmap (PRM) and rapidly-exploring random tree (RRT) were proposed. In this paper, a new robot path planning method based on Particle Swarm Optimization (PSO), which is one of heuristic optimization methods, is proposed in order to improve efficiency of path planning for a wider range of problems. In the proposed method, a group of particles fly through a configuration space while avoiding collision with obstacles and a collection of their trajectories is regarded as a roadmap. A velocity of each particle is updated for every time step based on the update equation of PSO. After explaining the details of the proposed method, this paper shows the comparisons of efficiency between the proposed method and RRT for 2D maze problems and then shows application of the proposed method to path planning for a 6 degree of freedom articulated robot.


Sign in / Sign up

Export Citation Format

Share Document