Fungi from the Rhynie chert: a view from the dark side

Keyword(s):  
2003 ◽  
Vol 94 (4) ◽  
pp. 457-473 ◽  
Author(s):  
T. N. Taylor ◽  
S. D. Klavins ◽  
M. Krings ◽  
E. L. Taylor ◽  
H. Kerp ◽  
...  

ABSTRACTThe exquisite preservation of organisms in the Early Devonian Rhynie chert ecosystem has permitted the documentation of the morphology and life history biology of fungi belonging to several major taxonomic groups (e.g., Chytridiomycota, Ascomycota, Glomeromycota). The Rhynie chert also provides the first unequivocal evidence in the fossil record of fungal interactions that can in turn be compared with those in modern ecosystems. These interactions in the Rhynie chert involve both green algae and macroplants, with examples of saprophytism, parasitism, and mutualism, including the earliest mycorrhizal associations and lichen symbiosis known to date in the fossil record. Especially significant are several types of specific host responses to fungal infection that indicate that these plants had already evolved methods of defence similar and perhaps analogous to those of extant plants. This suggests that mechanisms underlying the establishment and sustenance of associations of fungi with land plants were well in place prior to the Early Devonian. In addition, a more complete understanding of the microbial organisms involved in this complex ecosystem can also provide calibration points for phylogenies based on molecular data analysis. The richness of the microbial community in the Rhynie chert holds tremendous potential for documenting additional fungal groups, which permits speculation about further interactions with abiotic and biotic components of the environment.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


2006 ◽  
Vol 40 (12) ◽  
pp. 30
Author(s):  
BARBARA J. HOWARD
Keyword(s):  

2008 ◽  
Author(s):  
Ivelina N. Naydenova ◽  
Warren H. Jones
Keyword(s):  

2008 ◽  
Author(s):  
Amanda Poole ◽  
Julie Carswell ◽  
Rhys Lewis ◽  
Deborah Powell ◽  
Bernd Marcus

2009 ◽  
Author(s):  
Marisa Adelman ◽  
Linda R. Shanock ◽  
Eric D. Heggestad ◽  
Ashley Andrew ◽  
Matthew R. Walter ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document