host responses
Recently Published Documents


TOTAL DOCUMENTS

1443
(FIVE YEARS 471)

H-INDEX

91
(FIVE YEARS 15)

2022 ◽  
Vol 10 (1) ◽  
pp. 177
Author(s):  
Patrick Waindok ◽  
Elisabeth Janecek-Erfurth ◽  
Dimitri L. Lindenwald ◽  
Esther Wilk ◽  
Klaus Schughart ◽  
...  

Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer’s disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.


Critical Care ◽  
2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Vanessa Catenacci ◽  
Fatima Sheikh ◽  
Kush Patel ◽  
Alison E. Fox-Robichaud

Abstract Background Sepsis, the dysregulated host response to infection, triggers abnormal pro-coagulant and pro-inflammatory host responses. Limitations in early disease intervention highlight the need for effective diagnostic and prognostic biomarkers. Protein C’s role as an anticoagulant and anti-inflammatory molecule makes it an appealing target for sepsis biomarker studies. This meta-analysis aims to assess the diagnostic and prognostic value of protein C (PC) as a biomarker for adult sepsis. Methods We searched MEDLINE, PubMed, EMBASE, CINAHL and Cochrane Library from database inception to September 12, 2021. We included prospective observational studies of (1) adult patients (> 17) with sepsis or suspicion of sepsis that; (2) measured PC levels with 24 h of study admission with; and (3) the goal of examining PC as a diagnostic or prognostic biomarker. Two authors screened articles and conducted risk of bias (RoB) assessment, using the Quality in Prognosis Studies (QUIPS) and the Quality Assessment in Diagnostic Studies-2 (QUADAS-2) tools. If sufficient data were available, meta-analysis was conducted to estimate the standardized mean difference (SMD) between patient populations. Results Twelve studies were included, and 8 were synthesized for meta-analysis. Pooled analysis demonstrated moderate certainty of evidence that PC levels were less reduced in sepsis survivors compared to non-survivors (6 studies, 741 patients, SMD = 0.52, 95% CI 0.24–0.81, p = 0.0003, I2 = 55%), and low certainty of evidence that PC levels were less reduced in septic patients without disseminated intravascular coagulation (DIC) compared to those with DIC (3 studies, 644 patients, SMD = 0.97, 95% CI 0.62–1.32, p < 0.00001, I2 = 67%). PC could not be evaluated as a diagnostic tool due to heterogeneous control populations between studies. Conclusion and relevance Our review demonstrates that PC levels were significantly higher in sepsis survivors compared to non-survivors and patients with sepsis but not disseminated intravascular coagulation (DIC). Our evaluation is limited by high RoB in included studies and poor reporting of the sensitivity and specificity of PC as a sepsis biomarker. Future studies are needed to determine the sensitivity and specificity of PC to identify its clinical significance as a biomarker for early sepsis recognition. Trial Registration PROSPERO registration number: CRD42021229786. The study protocol was published in BMJ Open.


2022 ◽  
Vol 10 (1) ◽  
pp. 179
Author(s):  
Jiří Trousil ◽  
Lucia Frgelecová ◽  
Pavla Kubíčková ◽  
Kristína Řeháková ◽  
Vladimír Drašar ◽  
...  

Legionnaires’ disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires’ disease has been described in detail.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Katarina Persson ◽  
Ulrika Petersson ◽  
Charlotte Johansson ◽  
Isak Demirel ◽  
Robert Kruse

AbstractUropathogenic Escherichia coli (UPEC) may undergo a cyclic cascade of morphological alterations that are believed to enhance the potential of UPEC to evade host responses and re-infect host cell. However, knowledge on the pathogenic potential and host activation properties of UPEC during the morphological switch is limited. Microarray analysis was performed on mRNA isolated from human bladder epithelial cells (HBEP) after exposure to three different morphological states of UPEC (normal coliform, filamentous form and reverted form). Cells stimulated with filamentous bacteria showed the lowest number of significant gene alterations, although the number of enriched gene ontology classes was high suggesting diverse effects on many different classes of host genes. The normal coliform was in general superior in stimulating transcriptional activity in HBEP cells compared to the filamentous and reverted form. Top-scored gene entities activated by all three morphological states included IL17C, TNFAIP6, TNF, IL20, CXCL2, CXCL3, IL6 and CXCL8. The number of significantly changed canonical pathways was lower in HBEP cells stimulated with the reverted form (32 pathways), than in cells stimulated with the coliform (83 pathways) or filamentous bacteria (138 pathways). A host cell invasion assay showed that filamentous bacteria were unable to invade bladder cells, and that the number of intracellular bacteria was markedly lower in cells infected with the reverted form compared to the coliform. In conclusion, the morphological state of UPEC has major impact on the host bladder response both when evaluating the number and the identity of altered host genes and pathways.


BioChem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 27-43
Author(s):  
Caitlin Doughty ◽  
Louise Oppermann ◽  
Niels-Ulrik Hartmann ◽  
Stephan Dreschers ◽  
Christian Gille ◽  
...  

Infection and sepsis remain among the leading causes of neonatal mortality. The susceptibility of newborns to infection can be attributed to their immature immune system. Regarding immune response, monocytes represent a numerically minor population of leukocytes. However, they contribute to a variety of immunological demands, such as continuous replenishment of resident macrophages under non-infectious conditions and migration to inflamed sites where they neutralize pathogens and secrete cytokines. Further functions include the presentation of antigens and T-cell activation. Cytokines coordinate host responses to bacterial and viral infections and orchestrate ongoing physiological signaling between cells of non-immune tissues. A critical event is the skewing of the cytokine repertoire to achieve a resolution of infection. In this regard, monocytes may hold a key position as deciders in addition to their phagocytic activity, securing the extinction of pathogens to prevent broader organ damage by toxins and pro-inflammatory reactions. Neonatal monocytes undergo various regulatory and metabolic changes. Thus, they are thought to be vulnerable in anticipating pro-inflammatory conditions and cause severe progressions which increase the risk of developing sepsis. Furthermore, clinical studies have shown that exposure to inflammation puts neonates at a high risk for adverse pulmonary, immunological and other organ developments, which may result in multiorgan disease. This review discusses significant functions and impairments of neonatal monocytes that are decisive for the outcome of bacterial infections.


2022 ◽  
Author(s):  
Joan Marquez-Molins ◽  
Pascual Villalba-Bermell ◽  
Julia Corell-Sierra ◽  
Vicente Pallas ◽  
Gustavo Gomez

Constricted by an extreme biological simplicity, viroids are compelled to subvert host regulatory networks in order to accomplish their infectious process. Most of the studies focused on the response to viroid infection have only addressed a specific host regulatory level and considered a unique infection time. Thus, much remains to be done if we want to understand the temporal evolution and complex nature of viroid-host interactions. Here we present an integrative analysis of the timing and intensity of the genome-wide alterations in cucumber plants infected with Hop stunt viroid (HSVd). Differential host transcriptome, sRNAnome and methylome were integrated to determine the temporal response to viroid-infection. Our results support that HSVd promotes a dynamic redesign of the cucumber regulatory pathways predominantly affecting specific regulatory layers at different infection phases. Remarkably, the initial response was characterized by a reconfiguration of the host transcriptome by differential exon usage, followed by a predominant down-regulation of the transcriptional activity possibly modulated by the host epigenetic changes associated to infection and characterized by an increased hypermethylation. The silencing of at least three cucumber transcripts potential targets of vd-sRNAs was also observed. The alteration in host sRNA and miRNA metabolism was marginal. We expect that these data constituting the first comprehensive map of the cucumber-response to HSVd could contribute to elucidate the molecular basis of the host alterations triggered by viroid infection.


2021 ◽  
Vol 23 (1) ◽  
pp. 372
Author(s):  
Mariane Beatriz Sordi ◽  
Ricardo de Souza Magini ◽  
Layla Panahipour ◽  
Reinhard Gruber

Pyroptosis is a caspase-dependent process relevant to the understanding of beneficial host responses and medical conditions for which inflammation is central to the pathophysiology of the disease. Pyroptosis has been recently suggested as one of the pathways of exacerbated inflammation of periodontal tissues. Hence, this focused review aims to discuss pyroptosis as a pathological mechanism in the cause of periodontitis. The included articles presented similarities regarding methods, type of cells applied, and cell stimulation, as the outcomes also point to the same direction considering the cellular events. The collected data indicate that virulence factors present in the diseased periodontal tissues initiate the inflammasome route of tissue destruction with caspase activation, cleavage of gasdermin D, and secretion of interleukins IL-1β and IL-18. Consequently, removing periopathogens’ virulence factors, triggering pyroptosis, is a potential strategy to combat periodontal disease and regain tissue homeostasis.


2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Qing Yan Liu ◽  
Sonia Leclerc ◽  
Youlian Pan ◽  
Ziying Liu ◽  
Felicity Stark ◽  
...  

Francisella tularensis subspecies tularensis (Ftt) is extremely virulent for humans when inhaled as a small particle aerosol (<5 µm). Inhalation of ≥20 viable bacteria is sufficient to initiate infection with a mortality rate ≥30%. Consequently, in the past, Ftt became a primary candidate for biological weapons development. To counter this threat, the USA developed a live vaccine strain (LVS), that showed efficacy in humans against inhalation of virulent Ftt. However, the breakthrough dose was fairly low, and protection waned with time. These weaknesses triggered extensive research for better vaccine candidates. Previously, we showed that deleting the clpB gene from virulent Ftt strain, SCHU S4, resulted in a mutant that was significantly less virulent than LVS for mice, yet better protected them from aerosol challenge with wild-type SCHU S4. To date, comprehensive searches for correlates of protection for SCHU S4 ΔclpB among molecules that are critical signatures of cell-mediated immunity, have yielded little reward. In this study we used transcriptomics analysis to expand the potential range of molecular correlates of protection induced by vaccination with SCHU S4 ΔclpB beyond the usual candidates. The results provide proof-of-concept that unusual host responses to vaccination can potentially serve as novel efficacy biomarkers for new tularemia vaccines.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001065
Author(s):  
Vanessa Herder ◽  
Kieran Dee ◽  
Joanna K. Wojtus ◽  
Ilaria Epifano ◽  
Daniel Goldfarb ◽  
...  

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air–liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


2021 ◽  
Author(s):  
Wenzhe Wu ◽  
Eun-Jin Choi ◽  
Binbin Wang ◽  
Ke Zhang ◽  
Awadalkareem Adam ◽  
...  

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. Small non-coding RNAs (sncRNAs) are known to play important roles in almost all biological processes. In the context of viral infections, sncRNAs have been shown to regulate the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we recently found that nasopharyngeal swabs (NPS) samples from SARS-CoV-2 positive and negative subjects show a significant difference in sncRNA profiles. There are about 166 SARS-CoV-2-impacted sncRNAs. Among them, tRFs are the most significantly affected and almost all impacted tRFs are derived from the 5'-end of tRNAs (tRF5). Using a modified qRT-PCR, which was recently developed to specifically quantify tRF5s by isolating the tRF signals from its corresponding parent tRNA signals, we validated that tRF5s derived from tRNA GluCTC (tRF5-GluCTC), LysCTT (tRF5-LysCTT), ValCAC (tRF5-ValCAC), CysGCA (tRF5-CysGCA) and GlnCTG (tRF5-GlnCTG) are enhanced in NPS samples of SARS-CoV2 patients and SARS41 CoV2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several sncRNAs derived from the virus (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.


Sign in / Sign up

Export Citation Format

Share Document