taxonomic groups
Recently Published Documents


TOTAL DOCUMENTS

1456
(FIVE YEARS 683)

H-INDEX

72
(FIVE YEARS 11)

2022 ◽  
Vol 328 ◽  
pp. 107864
Author(s):  
Pierre Mallet ◽  
Arnaud Béchet ◽  
Thomas Galewski ◽  
François Mesléard ◽  
Samuel Hilaire ◽  
...  

2023 ◽  
Vol 83 ◽  
Author(s):  
L. F. Silva ◽  
F. W. S. Silva ◽  
G. L. Demolin-Leite ◽  
M. A. Soares ◽  
P. G. Lemes ◽  
...  

Abstract Acacia auriculiformis A. Cunn. Ex Benth. (Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs. Our goal was to assess during a 24-month survey the pattern of arthropods (phytophagous insects, bees, spiders, and predator insects) on the leaf surfaces of A. auriculiformis saplings. Fourteen species of phytophagous, two of bees and eleven of predators were most abundant on the adaxial surface. The values of the ecological indexes (abundance, diversity, and species richness) and the rarefaction, and k-dominance curves of phytophagous, bees and arthropod predators were highest on the adaxial leaf surface of A. auriculiformis. The k-dominance and abundance of Aleyrodidae (Hemiptera) (both leaf surfaces), the native stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) (both leaf surfaces) and the ant Brachymyrmex sp. (adaxial surface) and Pheidole sp. (Hymenoptera: Formicidae) (abaxial surface) were the highest between the taxonomic groups of phytophagous, bees, and predators, respectively on A. auriculiformis saplings. The ecological indexes and rarefaction, abundance, and k-dominance curves of phytophagous insects, bees, and predators were highest on the adaxial leaf surface. The preference of phytophagous insects for the adaxial leaf surface is probably due to the lower effort required to move on this surface. Understanding the arthropod preferences between leaf surfaces may help to develop sampling and pest management plans for the most abundant phytophagous insects on A. auriculiformis saplings. Also, knowledge on the preference pattern of bees and predators may be used to favour their conservation.


2022 ◽  
Vol 4 (1) ◽  
pp. 001-012
Author(s):  
Carlos Henrique Marchiori

Simuliidae belong to the order Diptera, suborder Nematocera, Infraorder Culicomorpha, Superfamily Chironomoidea, and Family Simuliidae. They are known as “borrachudo” or “pium” in Brazil and as “black flies” in English-speaking countries. This study objective to report the characteristics of the Family Simuliidae. The research was carried out in studies related to quantitative aspects of the Family, Subfamily and Species (taxonomic groups) and conceptual aspects such as: biology, geographical distribution, species, life cycle, damage, economic importance, medicinal importance, biological aspects, and reproduction. A literature search was carried out containing articles published from 1950 to 2021. The mini-review was prepared in Goiânia, Goiás, from September to October 2021, through the Portal of Scientific Journals in Health Sciences, Pubmed, Online Scientific Library (Scielo), internet, ResearchGate, Academia.edu, Frontiers, Biological Abstract, Publons, Qeios, Dialnet, World, Wide Science, Springer, RefSeek, Microsoft Academic, Science, ERIC, Science Research.com, SEEK education, Periodicals CAPES, Google Academic, Bioline International and VADLO.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261928
Author(s):  
Takuya Aikawa ◽  
Noritoshi Maehara ◽  
Yu Ichihara ◽  
Hayato Masuya ◽  
Katsunori Nakamura ◽  
...  

Wolbachia are obligatory endosymbiotic α-proteobacteria found in many arthropods. They are maternally inherited, and can induce reproductive alterations in the hosts. Despite considerable recent progress in studies on the associations between Wolbachia and various taxonomic groups of insects, none of the researches have revealed the effects of Wolbachia on longicorn beetles as the host insect. Acalolepta fraudatrix is a forest longicorn beetle that is distributed in East Asia. In this study, the relationship between Wolbachia and A. fraudatrix was investigated. Out of two populations of A. fraudatrix screened for Wolbachia using the genes ftsZ, wsp, and 16S rRNA, only one of the populations showed detection of all three genes indicating the presence of Wolbachia. Electron microscopy and fluorescent in situ hybridization also confirmed that the A. fraudatrix population was infected with Wolbachia. Sequencing the wsp genes derived from single insects revealed that two strains of Wolbachia coexisted in the insects based on the detection of two different sequences of the wsp gene. We designated these strains as wFra1 and wFra2. The bacterial titers of wFra1 were nearly 2-fold and 3-fold higher than wFra2 in the testes and ovaries, respectively. The two strains of Wolbachia in the insects were completely eliminated by rearing the insects on artificial diets containing 1% concentration of tetracycline for 1 generation. Reciprocal crosses between Wolbachia-infected and Wolbachia-uninfected A. fraudatrix demonstrated that only eggs produced by the crosses between Wolbachia-infected males and Wolbachia-uninfected females did not hatch, indicating that Wolbachia infecting A. fraudatrix causes cytoplasmic incompatibility in the host insect. This is the first report showing the effect of Wolbachia on reproductive function in a longicorn beetle, A. fraudatrix.


2022 ◽  
Vol 8 ◽  
Author(s):  
Christopher S. Ward ◽  
Zoie Diana ◽  
Kate Meicong Ke ◽  
Beatriz Orihuela ◽  
Thomas P. Schultz ◽  
...  

Plastics of various chemistries pollute global water bodies. Toxic chemicals leach with detrimental and often unpredictable impacts on the surrounding ecosystems. We found that seawater leachates of plastic pre-production pellets from 7 recycle categories are acutely toxic to stage II barnacle nauplii; lethal concentration 50 (LC50s) were observed in 24-h leachates from dilutions ranging from 0.007 to 2.1 mg/mL of seawater. Based on previous observations that macro-organismal settlement on fouling management coatings of various toxicities can be used to predict the toxicity of the coating, we hypothesized that interaction of plastic pre-production pellets with emerging microbiomes would exhibit patterns indicative of the chemistry at the pellet surface. We used amplicon sequencing of bacterial 16S ribosomal RNA genes to characterize the microbiomes that developed from 8 through 70 days on pellets exposed to the same flowing ambient seawater. Diversity and composition of the microbiomes colonizing plastic pellets changed over time and varied with plastic type. Microbial taxa belong to taxonomic groups known to consume hydrocarbons, to be prevalent following marine oil spills, or to live on fouling management surfaces. Microbiomes were still distinct between plastic types at Day 70, suggesting that differences in the physicochemical characteristics of the underlying plastics continue to exert variable selection of surface microbial communities. A random forest-based sample classifier correctly predicted 93% of plastic types using microbiome compositions. Surface microbiomes have promise for use in forensically identifying plastic types and potential toxicities.


2022 ◽  
Vol 2 ◽  
Author(s):  
Delaney M. Costante ◽  
Aaron M. Haines ◽  
Matthias Leu

Our planet is home to an incredible array of species; however, relatively few studies have compared how anthropogenic threats impact taxonomic groups over time. Our objective was to identify temporal trends in threats facing the four most speciose phyla protected by the United States Endangered Species Act: angiosperms, arthropods, chordates, and mollusks. We determined presence or absence of threats for each species in these phyla by reviewing Final Rule listing decisions. For each phylum, we evaluated whether there was a linear, quadratic, or pseudo-threshold association between year of listing and the presence of 24 anthropogenic threats. We identified temporal trends for 80% of the 96 threat-phylum combinations. We classified threats as topmost (probability of being included in a species' listing decision peaking at ≥ 0.81) and escalating (probability of being included in a listing decision increasing by ≥ 0.81 between a species' first and most recent years of listing). Angiosperms, arthropods, and mollusks each had more topmost and escalating threats than chordates. Percentages of topmost threats were 42.9% (N = 21) for mollusks, 36.4% (N = 22) for angiosperms, and 33.3% (N = 21) for arthropods. Percentages of escalating threats were 22.7% (N = 22) for angiosperms and 14.3% (N = 21) for arthropods and mollusks. In contrast, percentages of topmost and escalating threats were only 4.2% (N = 24) for chordates, this one threat being climate change. Our research suggests potential conservation successes; some overutilization and pollution threats showed only gradually increasing or declining trends for certain phyla. We identified authorized take impacting angiosperms as the sole threat-phylum combination for which the threat had been consistently decreasing since the phylum's first year of listing. Conversely, species interactions, environmental stochasticity, and demographic stochasticity threats have seen drastic increases across all phyla; we suggest conservation efforts focus on these areas of increasing concern. We also recommend that resources be allocated to phyla with numerous topmost and escalating threats, not just to chordates.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Da-Cheng Hao ◽  
Yulu Zhang ◽  
Chun-Nian He ◽  
Pei-Gen Xiao

The medicinal properties of plants can be evolutionarily predicted by phylogeny-based methods, which, however, have not been used to explore the regularity of therapeutic effects of Chinese plants utilized by ethnic minorities. This study aims at exploring the distribution law of therapeutic efficacy of Ranunculales plants on the phylogenetic tree of Chinese species. We collected therapeutic efficacy data of 551 ethnomedicinal species belonging to five species-rich families of Ranunculales; these therapeutic data were divided into 15 categories according to the impacted tissues and organs. The phylogenetic tree of angiosperm species was used to analyze the phylogenetic signals of ethnomedicinal plants by calculating the net relatedness index (NRI) and nearest taxon index (NTI) in R language. The NRI results revealed a clustered structure for eight medicinal categories (poisoning/intoxication, circulatory, gastrointestinal, eyesight, oral, pediatric, skin, and urinary disorders) and overdispersion for the remaining seven (neurological, general, hepatobiliary, musculoskeletal, otolaryngologic, reproductive, and respiratory disorders), while the NTI metric identified the clustered structure for all. Statistically, NRI and NTI values were significant in 5 and 11 categories, respectively. It was found that Mahonia eurybracteata has therapeutic effects on all categories. iTOL was used to visualize the distribution of treatment efficacy on species phylogenetic trees. By figuring out the distribution of therapeutic effects of Ranunculales medicinal plants, the importance of phylogenetic methods in finding potential medicinal resources is highlighted; NRI, NTI, and similar indices can be calculated to help find taxonomic groups with medicinal efficacy based on the phylogenetic tree of flora in different geographic regions.


2022 ◽  

Species delimitation is the process of determining whether a group of sampled individuals belong to the same species or to different species. The criteria used to delimit species differ across taxonomic groups, and the methods for delimiting species have changed over time, with a dramatic rise in the popularity of genomic approaches recently. Because inferred species boundaries have ramifications that extend beyond systematics, affecting all fields that rely upon species as a foundational unit, controversy has unsurprisingly surrounded not only the practices used to delimit species boundaries, but also the idea of what species are, which varies across taxa (e.g., the use of subspecies varies across the tree of life). This lack of consensus has no doubt contributed to the appeal of genetic-based delimitation. Specifically, genomic data can be collected from any taxon. Moreover, it can be analyzed in a common statistical framework (as popularized by the multispecies coalescent as a model for species delimitation). With the ease of collecting genetic data, the power of genomics, and the purported standardization for diagnosing species limits, genetic-based species delimitation is displacing traditional time-honored (albeit time-consuming) taxonomic practices of species diagnosis. It has also become an invaluable tool for discovering species in understudied groups, and genetic-based approaches are the foundation of international endeavors to generate a catalogue of DNA barcodes to illuminate biodiversity for all of life on the planet. Yet, genomic applications, and especially the sole reliance upon genetic data for inferring species boundaries, are not without their own set of challenges.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 372
Author(s):  
Feyisara Eyiwumi Oni ◽  
Qassim Esmaeel ◽  
Joseph Tobias Onyeka ◽  
Rasheed Adeleke ◽  
Cedric Jacquard ◽  
...  

Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host–microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy–molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant–pathogen interactions and in the enhancement of plant innate immunity.


Sign in / Sign up

Export Citation Format

Share Document