scholarly journals CONVERGENCE RATES OF SUMS OF α-MIXING TRIANGULAR ARRAYS: WITH AN APPLICATION TO NONPARAMETRIC DRIFT FUNCTION ESTIMATION OF CONTINUOUS-TIME PROCESSES

2016 ◽  
Vol 33 (5) ◽  
pp. 1121-1153
Author(s):  
Shin Kanaya

The convergence rates of the sums of α-mixing (or strongly mixing) triangular arrays of heterogeneous random variables are derived. We pay particular attention to the case where central limit theorems may fail to hold, due to relatively strong time-series dependence and/or the nonexistence of higher-order moments. Several previous studies have presented various versions of laws of large numbers for sequences/triangular arrays, but their convergence rates were not fully investigated. This study is the first to investigate the convergence rates of the sums of α-mixing triangular arrays whose mixing coefficients are permitted to decay arbitrarily slowly. We consider two kinds of asymptotic assumptions: one is that the time distance between adjacent observations is fixed for any sample size n; and the other, called the infill assumption, is that it shrinks to zero as n tends to infinity. Our convergence theorems indicate that an explicit trade-off exists between the rate of convergence and the degree of dependence. While the results under the infill assumption can be seen as a direct extension of those under the fixed-distance assumption, they are new and particularly useful for deriving sharper convergence rates of discretization biases in estimating continuous-time processes from discretely sampled observations. We also discuss some examples to which our results and techniques are useful and applicable: a moving-average process with long lasting past shocks, a continuous-time diffusion process with weak mean reversion, and a near-unit-root process.

2007 ◽  
Vol 44 (04) ◽  
pp. 977-989 ◽  
Author(s):  
Peter J. Brockwell ◽  
Richard A. Davis ◽  
Yu Yang

Continuous-time autoregressive moving average (CARMA) processes with a nonnegative kernel and driven by a nondecreasing Lévy process constitute a very general class of stationary, nonnegative continuous-time processes. In financial econometrics a stationary Ornstein-Uhlenbeck (or CAR(1)) process, driven by a nondecreasing Lévy process, was introduced by Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility to allow for a wide variety of possible marginal distributions and the possibility of jumps. For such processes, we take advantage of the nonnegativity of the increments of the driving Lévy process to study the properties of a highly efficient estimation procedure for the parameters when observations are available of the CAR(1) process at uniformly spaced times 0,h,…,Nh. We also show how to reconstruct the background driving Lévy process from a continuously observed realization of the process and use this result to estimate the increments of the Lévy process itself when h is small. Asymptotic properties of the coefficient estimator are derived and the results illustrated using a simulated gamma-driven Ornstein-Uhlenbeck process.


2003 ◽  
Vol 40 (04) ◽  
pp. 1133-1146 ◽  
Author(s):  
Chunsheng Ma

This paper introduces a rather general class of stationary continuous-time processes with long memory by randomizing the time-scale of short-memory processes. In particular, by randomizing the time-scale of continuous-time autoregressive and moving-average processes, many power-law decay and slow decay correlation functions are obtained.


2007 ◽  
Vol 44 (4) ◽  
pp. 977-989 ◽  
Author(s):  
Peter J. Brockwell ◽  
Richard A. Davis ◽  
Yu Yang

Continuous-time autoregressive moving average (CARMA) processes with a nonnegative kernel and driven by a nondecreasing Lévy process constitute a very general class of stationary, nonnegative continuous-time processes. In financial econometrics a stationary Ornstein-Uhlenbeck (or CAR(1)) process, driven by a nondecreasing Lévy process, was introduced by Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility to allow for a wide variety of possible marginal distributions and the possibility of jumps. For such processes, we take advantage of the nonnegativity of the increments of the driving Lévy process to study the properties of a highly efficient estimation procedure for the parameters when observations are available of the CAR(1) process at uniformly spaced times 0,h,…,Nh. We also show how to reconstruct the background driving Lévy process from a continuously observed realization of the process and use this result to estimate the increments of the Lévy process itself when h is small. Asymptotic properties of the coefficient estimator are derived and the results illustrated using a simulated gamma-driven Ornstein-Uhlenbeck process.


2003 ◽  
Vol 40 (4) ◽  
pp. 1133-1146 ◽  
Author(s):  
Chunsheng Ma

This paper introduces a rather general class of stationary continuous-time processes with long memory by randomizing the time-scale of short-memory processes. In particular, by randomizing the time-scale of continuous-time autoregressive and moving-average processes, many power-law decay and slow decay correlation functions are obtained.


1978 ◽  
Vol 51 (4) ◽  
pp. 601 ◽  
Author(s):  
J. Huston McCulloch

Sign in / Sign up

Export Citation Format

Share Document