near unit root
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2534
Author(s):  
Tolga Omay ◽  
Aysegul Corakci ◽  
Esra Hasdemir

In this study, we consider the hybrid nonlinear features of the Exponential Smooth Transition Autoregressive-Fractional Fourier Function (ESTAR-FFF) form unit root test. As is well known, when developing a unit root test for the ESTAR model, linearization is performed by the Taylor approximation, and thereby the nuisance parameter problem is eliminated. Although this linearization process leads to a certain amount of information loss in the unit root testing equation, it also causes the resulting test to be more accessible and consistent. The method that we propose here contributes to the literature in three important ways. First, it reduces the information loss that arises due to the Taylor expansion. Second, the research to date has tended to misinterpret the Fourier function used with the Kapetanios, Shin and Snell (2003) (KSS) unit root test and considers it to capture multiple smooth transition structural breaks. The simulation studies that we carry out in this study clearly show that the Fourier function only restores the Taylor residuals of the ESTAR type function rather than accounting forthe smooth structural break. Third, the new nonlinear unit root test developed in this paper has very strong power in the highly persistent near unit root environment that the financial data exhibit. The application of the Kapetanios Shin Snell- Fractional Fourier (KSS-FF) test to ex-post real interest rates data of 11 OECD countries for country-specific sample periods shows that the new test catches nonlinear stationarity in many more countries than the KSS test itself.


2021 ◽  
Vol 23 (09) ◽  
pp. 147-159
Author(s):  
Mohamed Khalifa Ahmed Issa ◽  

In this paper, new form of the parameters of AR(1) with constant term with missing observations has been derived by using Ordinary Least Squares (OLS) method, Also, the properties of OLS estimator are discussed, moreover, an extension of Youssef [18]has been suggested for AR(1) with constant with missing observations. A comparative study between (OLS), Yule-Walker (YW) and modification of the ordinary least squares (MOLS) is considered in the case of stationary and near unit root time series, using Monte Carlo simulation.


Author(s):  
Joakim Westerlund ◽  
Milda Norkutė ◽  
Ovidijus Stauskas

2020 ◽  
Author(s):  
Mohitosh Kejriwal ◽  
Xuewen Yu

Summary This paper develops a new approach to forecasting a highly persistent time series that employs feasible generalized least squares (FGLS) estimation of the deterministic components in conjunction with Mallows model averaging. Within a local-to-unity asymptotic framework, we derive analytical expressions for the asymptotic mean squared error and one-step-ahead mean squared forecast risk of the proposed estimator and show that the optimal FGLS weights are different from their ordinary least squares (OLS) counterparts. We also provide theoretical justification for a generalized Mallows averaging estimator that incorporates lag order uncertainty in the construction of the forecast. Monte Carlo simulations demonstrate that the proposed procedure yields a considerably lower finite-sample forecast risk relative to OLS averaging. An application to U.S. macroeconomic time series illustrates the efficacy of the advocated method in practice and finds that both persistence and lag order uncertainty have important implications for the accuracy of forecasts.


Econometrics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 45
Author(s):  
John C. Chao ◽  
Peter C. B. Phillips

This paper considers estimation and inference concerning the autoregressive coefficient ( ρ ) in a panel autoregression for which the degree of persistence in the time dimension is unknown. Our main objective is to construct confidence intervals for ρ that are asymptotically valid, having asymptotic coverage probability at least that of the nominal level uniformly over the parameter space. The starting point for our confidence procedure is the estimating equation of the Anderson–Hsiao (AH) IV procedure. It is well known that the AH IV estimation suffers from weak instrumentation when ρ is near unity. But it is not so well known that AH IV estimation is still consistent when ρ = 1 . In fact, the AH estimating equation is very well-centered and is an unbiased estimating equation in the sense of Durbin (1960), a feature that is especially useful in confidence interval construction. We show that a properly normalized statistic based on the AH estimating equation, which we call the M statistic, is uniformly convergent and can be inverted to obtain asymptotically valid interval estimates. To further improve the informativeness of our confidence procedure in the unit root and near unit root regions and to alleviate the problem that the AH procedure has greater variation in these regions, we use information from unit root pretesting to select among alternative confidence intervals. Two sequential tests are used to assess how close ρ is to unity, and different intervals are applied depending on whether the test results indicate ρ to be near or far away from unity. When ρ is relatively close to unity, our procedure activates intervals whose width shrinks to zero at a faster rate than that of the confidence interval based on the M statistic. Only when both of our unit root tests reject the null hypothesis does our procedure turn to the M statistic interval, whose width has the optimal N - 1 / 2 T - 1 / 2 rate of shrinkage when the underlying process is stable. Our asymptotic analysis shows this pretest-based confidence procedure to have coverage probability that is at least the nominal level in large samples uniformly over the parameter space. Simulations confirm that the proposed interval estimation methods perform well in finite samples and are easy to implement in practice. A supplement to the paper provides an extensive set of new results on the asymptotic behavior of panel IV estimators in weak instrument settings.


2019 ◽  
Vol 49 (2) ◽  
pp. 433-455 ◽  
Author(s):  
Qing Liu ◽  
Chen Ling ◽  
Deyuan Li ◽  
Liang Peng

AbstractAs a benchmark mortality model in forecasting future mortality rates and hedging longevity risk, the widely employed Lee–Carter model (Lee, R.D. and Carter, L.R. (1992) Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87, 659–671.) suffers from a restrictive constraint on the unobserved mortality index for ensuring model’s identification and a possible inconsistent inference. Recently, a modified Lee–Carter model (Liu, Q., Ling, C. and Peng, L. (2018) Statistical inference for Lee–Carter mortality model and corresponding forecasts. North American Actuarial Journal, to appear.) removes this constraint and a simple least squares estimation is consistent with a normal limit when the mortality index follows from a unit root or near unit root AR(1) model with a nonzero intercept. This paper proposes a bias-corrected estimator for this modified Lee–Carter model, which is consistent and has a normal limit regardless of the mortality index being a stationary or near unit root or unit root AR(1) process with a nonzero intercept. Applications to the US mortality rates and a simulation study are provided as well.


Sign in / Sign up

Export Citation Format

Share Document