Differences in topographic and soil habitat specialization between trees and two understorey plant groups in a Costa Rican lowland rain forest

2016 ◽  
Vol 32 (6) ◽  
pp. 482-497 ◽  
Author(s):  
Mirkka M. Jones ◽  
Kalle Ruokolainen ◽  
Nelly C. Llerena Martinez ◽  
Hanna Tuomisto

Abstract:Two core questions in plant community ecology are to what extent the distributions of species are structured by local environmental conditions, and whether taxa differ in this regard. We compared the distributions of trees, Melastomataceae and ferns on soil and topographic gradients in a Costa Rican lowland rain forest (trees and ferns 983 plots, Melastomataceae 277 plots). To test whether these plant groups differed in the prevalence or type of habitat specialization, we calculated species’ environmental optima and tolerances on each gradient. Habitat specialization was defined as a significantly biased optimum, or a narrow tolerance, relative to values obtained under spatially restricted randomizations of species occurrences. Within plant groups, we also asked whether the dispersion of species optima differed from random expectation on each gradient. Fern optima were over-dispersed on multiple gradients, implying considerable interspecific habitat partitioning, and tree optima were over-dispersed in relation to topographic position. Habitat specialization was more prevalent in the two predominantly understorey groups than in trees (75% of Melastomataceae species, 81–87% of ferns, 57–58% of trees). Species optima of Melastomataceae and ferns also tended towards lower landscape positions than did those of trees, perhaps reflecting a higher proportion of drought-sensitive species in these two groups.

2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.


1999 ◽  
Vol 15 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Frank J. Sterck ◽  
David B. Clark ◽  
Deborah A. Clark ◽  
Frans Bongers

1990 ◽  
Vol 6 (4) ◽  
pp. 409-420 ◽  
Author(s):  
Douglas J. Levey

ABSTRACTFruit production by an understorey tree,Miconia centrodesma, was monitored in treefall gaps and under intact canopy in a Costa Rican lowland rain forest. Trees in gaps displayed much less seasonality in fruit production than trees of intact forest sites. For example, ripe fruits were common on gap trees for a six month period (January-June) when few or no trees under intact canopy were in fruit. The frequent and aseasonal fruiting of gap trees demonstrates that they are not constrained by phenological cueing mechanisms; the influence of such cues is overridden by habitat. Trees in gaps also produced larger crops, had more extended fruiting episodes, and fruited more frequently than shaded conspecifics. This level of intraspecific variation in fruiting behaviour suggests that treefall gaps play an important role in determining the reproductive success ofM. centrodesma. A substantial proportion of an individual's lifetime seed output may be produced during the brief period it occupies a gap. In addition, the large and continuous supply of fruits produced in gaps byM. centrodesmaand other understorey plants, may mean that gaps function as ‘keystone habitats’ by providing resident frugivores with fruit during periods of general fruit scarcity.


Biotropica ◽  
2008 ◽  
Vol 40 (5) ◽  
pp. 615-622 ◽  
Author(s):  
Bruce E. Young ◽  
Thomas W. Sherry ◽  
Bryan J. Sigel ◽  
Stefan Woltmann

Human Ecology ◽  
1990 ◽  
Vol 18 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Peter D. Dwyer ◽  
Monica Minnegal

2001 ◽  
Vol 88 (10) ◽  
pp. 1801-1812 ◽  
Author(s):  
Guillermo Ibarra-Manríquez ◽  
Miguel Martínez Ramos ◽  
Ken Oyama

Sign in / Sign up

Export Citation Format

Share Document