habitat specialization
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 49)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Laura Bosco ◽  
Yanjie Xu ◽  
Purabi Deshpande ◽  
Aleksi Lehikoinen

Abstract Climatic warming is forcing numerous species to shift their ranges poleward, which has been demonstrated for many taxa across the globe. Yet, the influence of habitat types on within- and among-species variations of distribution shifts has rarely been studied, especially so for the non-breeding season. Here, we investigated habitat specific shift distances of northern range margins and directions of the center of gravity based on a long-term dataset of overwintering birds in Finland. Specifically, we explored influences of habitat type, snow cover depths, species’ climatic niche and habitat specialization on range shifts from 1980’s to 2010’s in 81 bird species. Birds overwintering in farmlands shifted significantly more often northwards than birds of the same species in rural and forest habitats, while the northern range margin shift distances did not significantly differ among the habitat types. Snow cover was negatively associated with the eastward shift direction across all habitats, while we found habitat specific relations to snow cover with northward shift directions and northern range margins shift distances. Species with stronger habitat specializations shifted more strongly towards north as compared to generalist species, whereas the climatic niche of bird species only marginally correlated with range shifts, so that cold-dwelling species shifted longer distances and more clearly eastwards. Our study reveals habitat specific patterns linked to snow conditions for overwintering boreal birds and highlights importance of habitat availability and preference in climate driven range shifts.


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Héctor Tejero-Cicuéndez ◽  
Marc Simó-Riudalbas ◽  
Iris Menéndez ◽  
Salvador Carranza

Island colonists are often assumed to experience higher levels of phenotypic diversification than continental taxa. However, empirical evidence has uncovered exceptions to this ‘island effect’. Here, we tested this pattern using the geckos of the genus Pristurus from continental Arabia and Africa and the Socotra Archipelago. Using a recently published phylogeny and an extensive morphological dataset, we explore the differences in phenotypic evolution between Socotran and continental taxa. Moreover, we reconstructed ancestral habitat occupancy to examine if ecological specialization is correlated with morphological change, comparing phenotypic disparity and trait evolution between habitats. We found a heterogeneous outcome of island colonization. Namely, only one of the three colonization events resulted in a body size increase. However, in general, Socotran species do not present higher levels or rates of morphological diversification than continental groups. Instead, habitat specialization explains better the body size and shape evolution in Pristurus . Particularly, the colonization of ground habitats appears as the main driver of morphological change, producing the highest disparity and evolutionary rates. Additionally, arboreal species show very similar body size and head proportions. These results reveal a determinant role of ecological mechanisms in morphological evolution and corroborate the complexity of ecomorphological dynamics in continent–island systems.


2021 ◽  
Author(s):  
Gibran Renoy Pérez-Toledo ◽  
Fabricio Villalobos ◽  
Rogerio R. Silva ◽  
Claudia E. Moreno ◽  
Marcio Pie ◽  
...  

Abstract Despite the long-standing interest in the organization of ant communities across elevational gradients, few studies have incorporated the evolutionary information to understand the historical processes that underlay such patterns. Through the evaluation of phylogenetic α and β-diversity, we analyzed the structure of leaf-litter ant communities along the Cofre de Perote mountain in Mexico and inferred its putative driving forces. Lowland and some highland sites showed phylogenetic clustering, whereas intermediate elevations and the highest site presented phylogenetic overdispersion. We infer that strong environmental constrains found at the bottom and the top elevations are favoring closely-related species to prevail at those elevations. Conversely, more benign conditions at intermediate elevations suggest interspecific interactions being more important in these environments. Total phylogenetic dissimilarity was driven by the turnover component, indicating that the turnover of ant species along the mountain is actually shifts of lineages adapted to particular locations resembling their ancestral niche. The greater phylogenetic dissimilarity between communities was related to greater temperature distances probably due to narrow thermal tolerances inherit to several ant lineages that evolved in more stable conditions. Our results suggest that the interplay between environmental filtering, interspecific competition and habitat specialization plays an important role in the assembly of leaf-litter ant communities along elevational gradients.


2021 ◽  
Author(s):  
Claire Teitelbaum ◽  
Sonia Altizer ◽  
Richard J Hall

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carl S. Cloyed ◽  
Rachel M. Wilson ◽  
Brian C. Balmer ◽  
Aleta A. Hohn ◽  
Lori H. Schwacke ◽  
...  

AbstractMobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11915
Author(s):  
André Boraks ◽  
Anthony S. Amend

Ecological processes that control fungal distribution are not well understood because many fungi can persist in a wide variety of dissimilar habitats which are seldom sampled simultaneously. Geographic range size is reflective of species’ resource usage, and for plants and animals, there is a robust positive correlation between niche-breadth and range-size. It remains unknown whether this pattern is true for fungi. To investigate the fungal niche breadth–range size relationship we identified habitat specialists and generalists from two habitats (plant leaves and soil) and asked whether habitat specialization influenced fungal biogeography. We sampled fungi from the soil and phylloplane of tropical forests in Vanuatu and used DNA metabarcoding of the fungal ITS1 region to examine rarity, range size, and habitat connectivity. Fungal communities from the soil and phylloplane are spatially autocorrelated and the spatial distribution of individual fungal OTU are coupled between habitats. Habitat breadth (generalist fungi) did not result in larger range sizes but did correlate positively with occurrence frequency. Fungi that were frequently found were also found in high abundance, a common observation in similar studies of plants and animals. Fungal abundance-occupancy relationships differed by habitat and habitat-specificity. Soil specialists were found to be locally abundant but restricted geographically. In contrast, phylloplane generalists were found to be abundant over a large range in multiple habitats. These results are discussed in the context of differences between habitat characteristics, stability and spatial distribution. Identifying factors that drive spatial variation is key to understanding the mechanisms that maintain biodiversity in forests.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2477
Author(s):  
Alexandra K. Mason ◽  
Jeongha Lee ◽  
Sean M. Perry ◽  
Kimberly L. Boykin ◽  
Fabio Del Piero ◽  
...  

Reptiles are highly susceptible to anthropogenic activities as a result of their narrow geographical ranges and habitat specialization, making them a conservation concern. Geckos represent one of the mega-diverse reptile lineages under pressure; however, limited assisted reproductive technologies currently exist for these animals. Exogenous pregnant mare serum gonadotropin (PMSG) has been found to exhibit follicle stimulating hormone-like action and has been routinely used to alter reproductive hormones of vertebrates in assisted reproductive protocols. The purpose of this study was to determine the effects of serial injections of 20 IU and 50 IU PMSG on circulating testosterone concentrations, testicular dynamics, and semen production in a model species of gecko. Twenty-four captive-bred, adult, male leopard geckos (Eublepharis macularius) were divided into three treatment groups and administered a once-weekly injection of either PMSG or saline for a total of nine weeks. Ultrasonographic testicular measurements, electrostimulation for semen collection, and venipuncture were performed on days 0, 21, 42, and 63. Right unilateral orchidectomies and epididymectomies were performed in all animals on day 63; tissues were submitted for histopathology. PMSG treated geckos had significantly higher testicular volumes and weights, spermatozoa motility, and spermatozoa concentrations compared with controls. However, there were no significant differences in testosterone concentrations by treatment or time. Under the conditions outlined, PMSG is effective at stimulating spermatogenesis and increasing testicular size, but not effective at increasing testosterone concentrations in the leopard gecko between October–December in the Northern hemisphere.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11979
Author(s):  
Luiza Magalli Pinto Henriques ◽  
Sidnei Dantas ◽  
Lucyana Barros Santos ◽  
Anderson S. Bueno ◽  
Carlos A. Peres

Hydroelectric dams represent an emergent threat to lowland tropical forest biodiversity. Despite the large number of operational, under-construction, and planned hydroelectric dams, their long-term effects on biodiversity loss are still poorly documented. Here, we investigate avian extinctions resulting from the Tucuruí Hydroelectric Reservoir (THR), the oldest Amazonian mega dam, which impounded the Tocantins River in 1984. Our avian inventory—based on several sampling methods (mist-netting, point-counts, boat census and qualitative surveys) during 280 days of fieldwork from 2005 to 2007—was combined with an exhaustive search of museum vouchers and digital online databases of citizen science from the lower Tocantins River to identify long-term trends in species persistence and extinction in the THR influence area. The regional avifauna was comprised of 479 species, 404 of which were recorded during our fieldwork. Based on recent and historical records spanning 172 years, we found evidence for likely extinctions at THR influence area for 53 (11.06%) species that have remained entirely unreported since 1984. We were further able to estimate extinction probabilities for 20 species; 15 species were considered to be extinct, including Psophia interjecta and Pyrilia vulturina that are red-listed by IUCN. Our study serves as a baseline for avifaunal monitoring in the THR influence area and shows that degree of habitat specialization is a key factor in determining species extinctions caused by nonrandom habitat loss from either inundation or deforestation. Avian species extinctions will most likely continue across the area affected by the reservoir as a direct impact of alluvial forest loss and ongoing habitat degradation of upland forests.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Gerald Henry ◽  
Rebecca Grubbs ◽  
Chase Straw ◽  
Kevin Tucker ◽  
Jared Hoyle

Previous research involving turfgrass response to soil moisture used methodology that may compromise root morphology or fail to control outside environmental factors. Water-table depth gradient tanks were employed in the greenhouse to identify habitat specialization of hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] and manilagrass [Zoysia matrella (L.) Merr.] maintained at 2.5 and 5.1 cm. Turfgrass quality (TQ), normalized difference vegetation index (NDVI), canopy temperature (CT), and root biomass (RB) were used as metrics for plants grown in monoculture in sandy clay loam soil. Mowing height did not affect growth of turfgrass species in response to soil moisture. Turfgrass quality, NDVI, and RB were greatest, whereas CT was lowest at wetter levels [27- to 58-cm depth to the water-table (DWT)] of each tank where plants were growing at or above field capacity. However, bermudagrass RB was greatest at 27-cm DWT, whereas manilagrass RB at 27-cm DWT was lower than RB at 42.5- to 73.5-cm DWT in 2013 and lower than all other levels in 2014. Both species responded similarly to droughty levels (120- to 151-cm DWT) of the tanks. Turfgrass quality, NDVI, and RB were lowest, whereas CT was highest at higher droughty levels. Bermudagrass may be more competitive than manilagrass when soil moisture is high whereas both species are less competitive when soil moisture is low.


2021 ◽  
Author(s):  
Héctor Tejero-Cicuéndez ◽  
Marc Simó-Riudalbas ◽  
Iris Menéndez ◽  
Salvador Carranza

Island colonists are often assumed to experience higher levels of phenotypic diversification than their continental sister taxa. However, empirical evidence shows that exceptions to the familiar "island rule" do exist. In this study, we tested this rule using a nearly complete sampled mainland-island system, the genus Pristurus, a group of sphaerodactylid geckos mainly distributed across continental Arabia and Africa and the Socotra Archipelago. We used a recently published phylogeny and an extensive dataset of morphological measures to explore whether island and mainland taxa share the same morphospace or if they present different dynamics of phenotypic evolution. Moreover, we used habitat data to examine if ecological specialization is correlated with morphological change, reconstructing the ancestral habitat states across the phylogeny to compare the level of phenotypic disparity and trait evolution between habitats. We found that insular species do not present higher levels or rates of morphological diversification than continental groups. Instead, habitat specialization provides insight into the evolution of body size and shape in Pristurus. In particular, the adaptation to exploit ground habitats seems to have been the main driver of morphological change, producing the highest levels of disparity and evolutionary rates. Additionally, arboreal species show very constrained body size and head proportions, suggesting morphological convergence driven by habitat specialization. Our results reveal a determinant role of ecological mechanisms in morphological evolution and corroborate the complexity of ecomorphological dynamics in mainland-island systems.


Sign in / Sign up

Export Citation Format

Share Document