A theorem on the cumulative product of independent random variables

1959 ◽  
Vol 55 (4) ◽  
pp. 333-337 ◽  
Author(s):  
Harold Ruben

1. Introductory discussion and summary. Consider a sequence {ui} of independent real or complex-valued random variables such that E(ui) = 1, and a sequence of mutually exclusive events S1, S2,…, such that Si depends only on u1, u2, …,ui, with ΣP(Sj) = 1. Define the random variable n = n(u1, u2,…) = m when Sm occurs. We shall obtain the necessary and sufficient conditions under whichreferred to as the product theorem.

1977 ◽  
Vol 82 (3) ◽  
pp. 439-446 ◽  
Author(s):  
Peter Hall

AbstractLet {Xnj, 1 ≤ j ≤ kn} be independent random variables with zero means and satisfying . Let p ≥ 1. We prove thatif and only if, for all ε > 0,and we use this result to obtain necessary and sufficient conditions for the Lp convergence of sums of non-negative, independent random variables.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Przemysław Matuła ◽  
Michał Seweryn

We find necessary and sufficient conditions for the weighted strong law of large numbers for independent random variables with multidimensional indices belonging to some sector.


1964 ◽  
Vol 4 (2) ◽  
pp. 223-228 ◽  
Author(s):  
J. F. C. Kingman

Let X1, X2,…Xn, … be independent and identically distributed random variables, and write . In [2] Chung and Fuchs have established necessary and sufficient conditions for the random walk {Zn} to be recurrent, i.e. for Zn to return infinitely often to every neighbourhood of the origin. The object of this paper is to obtain similar results for the corresponding process in continuous time.


Author(s):  
R. A. Maller

AbstractThe main purpose of the paper is to give necessary and sufficient conditions for the almost sure boundedness of (Sn – αn)/B(n), where Sn = X1 + X2 + … + XmXi being independent and identically distributed random variables, and αnand B(n) being centering and norming constants. The conditions take the form of the convergence or divergence of a series of a geometric subsequence of the sequence P(Sn − αn > a B(n)), where a is a constant. The theorem is distinguished from previous similar results by the comparative weakness of the subsidiary conditions and the simplicity of the calculations. As an application, a law of the iterated logarithm general enough to include a result of Feller is derived.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 749 ◽  
Author(s):  
Yury Khokhlov ◽  
Victor Korolev ◽  
Alexander Zeifman

In the paper, multivariate probability distributions are considered that are representable as scale mixtures of multivariate stable distributions. Multivariate analogs of the Mittag–Leffler distribution are introduced. Some properties of these distributions are discussed. The main focus is on the representations of the corresponding random vectors as products of independent random variables and vectors. In these products, relations are traced of the distributions of the involved terms with popular probability distributions. As examples of distributions of the class of scale mixtures of multivariate stable distributions, multivariate generalized Linnik distributions and multivariate generalized Mittag–Leffler distributions are considered in detail. Their relations with multivariate ‘ordinary’ Linnik distributions, multivariate normal, stable and Laplace laws as well as with univariate Mittag–Leffler and generalized Mittag–Leffler distributions are discussed. Limit theorems are proved presenting necessary and sufficient conditions for the convergence of the distributions of random sequences with independent random indices (including sums of a random number of random vectors and multivariate statistics constructed from samples with random sizes) to scale mixtures of multivariate elliptically contoured stable distributions. The property of scale-mixed multivariate elliptically contoured stable distributions to be both scale mixtures of a non-trivial multivariate stable distribution and a normal scale mixture is used to obtain necessary and sufficient conditions for the convergence of the distributions of random sums of random vectors with covariance matrices to the multivariate generalized Linnik distribution.


1970 ◽  
Vol 11 (1) ◽  
pp. 91-94 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≧ 1} be a sequence of independent random variables and write Letand let . Suppose that converges in law to the standard normal distribution (see [5, 280] for necessary and sufficient conditions). Let {xn} be a monotonic sequence of positive real numbers such that xn → ∞ as n → ∞. Then as n → ∞ for all ε > 0. [6] Rubin and Sethuraman call probabilities of the form probabilities of moderate deviations and obtain asymptotic forms for such probabilities under appropriate moment conditions.


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


Author(s):  
Lu-San Chen ◽  
Cheh-Chih Yeh

SynopsisThis paper studies the equationwhere the differential operator Ln is defined byand a necessary and sufficient condition that all oscillatory solutions of the above equation converge to zero asymptotically is presented. The results obtained extend and improve previous ones of Kusano and Onose, and Singh, even in the usual case wherewhere N is an integer with l≦N≦n–1.


1966 ◽  
Vol 62 (4) ◽  
pp. 649-666 ◽  
Author(s):  
G. A. Reid

The Stone-Weierstrass theorem gives very simple necessary and sufficient conditions for a subset A of the algebra of all real-valued continuous functions on the compact Hausdorff space X to generate a subalgebra dense in namely, this is so if and only if the functions of A strongly separate the points of X, in other words given any two distinct points of X there exists a function in A taking different values at these points, and given any point of X there exists a function in A non-zero there. In the case of the algebra of all complex-valued continuous functions on X, the same result holds provided that we consider the subalgebra generated by A together with Ā, the set of complex conjugates of the functions in A.


Sign in / Sign up

Export Citation Format

Share Document