elliptically contoured
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1728
Author(s):  
Yury Khokhlov ◽  
Victor Korolev

A generalized multivariate problem due to V. M. Zolotarev is considered. Some related results on geometric random sums and (multivariate) geometric stable distributions are extended to a more general case of “anisotropic” random summation where sums of independent random vectors with multivariate random index having a special multivariate geometric distribution are considered. Anisotropic-geometric stable distributions are introduced. It is demonstrated that these distributions are coordinate-wise scale mixtures of elliptically contoured stable distributions with the Marshall–Olkin mixing distributions. The corresponding “anisotropic” analogs of multivariate Laplace, Linnik and Mittag–Leffler distributions are introduced. Some relations between these distributions are presented.


Author(s):  
Taras Bodnar ◽  
Mathias Lindholm ◽  
Erik Thorsén ◽  
Joanna Tyrcha

AbstractIn this paper the concept of quantile-based optimal portfolio selection is introduced and a specific portfolio connected to it, the conditional value-of-return (CVoR) portfolio, is proposed. The CVoR is defined as the mean excess return or the conditional value-at-risk (CVaR) of the return distribution. The portfolio selection consists solely of quantile-based risk and return measures. Financial institutions that work in the context of Basel 4 use CVaR as a risk measure. In this regulatory framework sufficient and necessary conditions for optimality of the CVoR portfolio are provided under a general distributional assumption. Moreover, it is shown that the CVoR portfolio is mean-variance efficient when the returns are assumed to follow an elliptically contoured distribution. Under this assumption the closed-form expression for the weights and characteristics of the CVoR portfolio are obtained. Finally, the introduced methods are illustrated in an empirical study based on monthly data of returns on stocks included in the S&P index. It is shown that the new portfolio selection strategy outperforms several alternatives in terms of the final investor wealth.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
P. J. G. Teunissen

Abstract This contribution extends the theory of integer equivariant estimation (Teunissen in J Geodesy 77:402–410, 2003) by developing the principle of best integer equivariant (BIE) estimation for the class of elliptically contoured distributions. The presented theory provides new minimum mean squared error solutions to the problem of GNSS carrier-phase ambiguity resolution for a wide range of distributions. The associated BIE estimators are universally optimal in the sense that they have an accuracy which is never poorer than that of any integer estimator and any linear unbiased estimator. Next to the BIE estimator for the multivariate normal distribution, special attention is given to the BIE estimators for the contaminated normal and the multivariate t-distribution, both of which have heavier tails than the normal. Their computational formulae are presented and discussed in relation to that of the normal distribution.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 749 ◽  
Author(s):  
Yury Khokhlov ◽  
Victor Korolev ◽  
Alexander Zeifman

In the paper, multivariate probability distributions are considered that are representable as scale mixtures of multivariate stable distributions. Multivariate analogs of the Mittag–Leffler distribution are introduced. Some properties of these distributions are discussed. The main focus is on the representations of the corresponding random vectors as products of independent random variables and vectors. In these products, relations are traced of the distributions of the involved terms with popular probability distributions. As examples of distributions of the class of scale mixtures of multivariate stable distributions, multivariate generalized Linnik distributions and multivariate generalized Mittag–Leffler distributions are considered in detail. Their relations with multivariate ‘ordinary’ Linnik distributions, multivariate normal, stable and Laplace laws as well as with univariate Mittag–Leffler and generalized Mittag–Leffler distributions are discussed. Limit theorems are proved presenting necessary and sufficient conditions for the convergence of the distributions of random sequences with independent random indices (including sums of a random number of random vectors and multivariate statistics constructed from samples with random sizes) to scale mixtures of multivariate elliptically contoured stable distributions. The property of scale-mixed multivariate elliptically contoured stable distributions to be both scale mixtures of a non-trivial multivariate stable distribution and a normal scale mixture is used to obtain necessary and sufficient conditions for the convergence of the distributions of random sums of random vectors with covariance matrices to the multivariate generalized Linnik distribution.


Sign in / Sign up

Export Citation Format

Share Document