On the Number of Real Roots of a Random Algebraic Equation

1962 ◽  
Vol 58 (3) ◽  
pp. 433-442 ◽  
Author(s):  
G. Samal

ABSTRACTLet Nn be the number of real roots of a random algebraic equation The coefficients ξν are independent random variables identically distributed with expectation zero; the variance and third absolute moment are finite and non-zero. It is proved thatwhere εν tends to zero, but εν log n tends to infinity. The measure of the exceptional set tends to zero as n tends to infinity.

Author(s):  
M. N. Mishra ◽  
N. N. Nayak ◽  
S. Pattanayak

AbstractLet X1, X2, …, Xn be identically distributed independent random variables belonging to the domain of attraction of the normal law, have zero means and Pr{Xr ≠ 0} > 0. Suppose a0, a1, …, an are non-zero real numbers and max and εn is such that as n → ∞, εn. If Nn be the number of real roots of the equation then for n > n0, Nn > εn log n outside an exceptional set of measure at most provided limn→∞ (kn/tn) is finite.


Author(s):  
D. Pratihari ◽  
R. K. Panda ◽  
B. P. Pattanaik

AbstractLet Nn(ω) be the number of real roots of the random algebraic equation Σnv = 0 avξv (ω)xv = 0, where the ξv(ω)'s are independent, identically distributed random variables belonging to the domain of attraction of the normal law with mean zero and P{ξv(ω) ≠ 0} > 0; also the av 's are nonzero real numbers such that (kn/tn) = 0(log n) where kn = max0≤v≤n |av| and tn = min0≤v≤n |av|. It is shown that for any sequence of positive constants (εn, n ≥ 0) satisfying εn → 0 and ε2nlog n → ∞ there is a positive constant μ so that for all n0 sufficiently large.


2007 ◽  
Vol 2007 ◽  
pp. 1-8
Author(s):  
Takashi Uno

We estimate a lower bound for the number of real roots of a random alegebraic equation whose random coeffcients are dependent normal random variables.


1975 ◽  
Vol 12 (04) ◽  
pp. 673-683
Author(s):  
G. R. Grimmett

I show that the sumof independent random variables converges in distribution when suitably normalised, so long as theXksatisfy the following two conditions:μ(n)= E |Xn|is comparable withE|Sn| for largen,andXk/μ(k) converges in distribution. Also I consider the associated birth processX(t) = max{n:Sn≦t} when eachXkis positive, and I show that there exists a continuous increasing functionv(t) such thatfor some variableYwith specified distribution, and for almost allu. The functionv, satisfiesv(t) =A(1 +o(t)) logt. The Markovian birth process with parameters λn= λn, where 0 < λ < 1, is an example of such a process.


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


1992 ◽  
Vol 112 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Barbara Szyszkowicz

Let S(N(t)) be defined bywhere {N(t), t ≥ 0} is a Poisson process with intensity parameter 1/μ > 0 and {Xi i ≥ 1} is a family of independent random variables which are also independent of {N(t), t ≥ 0}.


1970 ◽  
Vol 7 (01) ◽  
pp. 89-98
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


1963 ◽  
Vol 59 (2) ◽  
pp. 411-416
Author(s):  
G. De Barra ◽  
N. B. Slater

Let Xν, ν= l, 2, …, n be n independent random variables in k-dimensional (real) Euclidean space Rk, which have, for each ν, finite fourth moments β4ii = l,…, k. In the case when the Xν are identically distributed, have zero means, and unit covariance matrices, Esseen(1) has discussed the rate of convergence of the distribution of the sumsIf denotes the projection of on the ith coordinate axis, Esseen proves that ifand ψ(a) denotes the corresponding normal (radial) distribution function of the same first and second moments as μn(a), thenwhere and C is a constant depending only on k. (C, without a subscript, will denote everywhere a constant depending only on k.)


Sign in / Sign up

Export Citation Format

Share Document