Abstract Köthe spaces. IV

Author(s):  
D. H. Fremlin

In this paper I investigate the completed projective tensor product of two perfect Riesz spaces, and show how a natural order structure on this renders it also a perfect Riesz space. Sections 7–14 contain interesting order-topological properties of this tensor product. Finally, section 15 describes how the tensor product of function spaces may be represented as a function space, in the manner of (1 b).

1967 ◽  
Vol 63 (4) ◽  
pp. 957-962 ◽  
Author(s):  
D. H. Fremlin

In this paper I shall be considering the space of linear maps between two (perfect) Riesz spaces, and shall show how certain topological properties of these maps are related to the natural order structure of the space. The fundamental result is (e) of section 4, certain special cases of which have been treated in (4) and (5), using a less elliptic method of proof. Probably the most interesting new result in the present paper is section 10 in the special case of both L and M× being L1 spaces (so that |σ| (L, L×) and |σ| (M×, M) are the norm topologies ((2 b), section 7) and Λ(L; M×) is the space of norm-continuous linear maps).


2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


2021 ◽  
pp. 1-14
Author(s):  
R.M. CAUSEY

Abstract Galego and Samuel showed that if K, L are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_\pi C(L)$ is c0-saturated if and only if it is subprojective if and only if K and L are both scattered. We remove the hypothesis of metrizability from their result and extend it from the case of the twofold projective tensor product to the general n-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces K1, …, K n , $\widehat{\otimes}_{\pi, i=1}^n C(K_i)$ is c0-saturated if and only if it is subprojective if and only if each K i is scattered.


2003 ◽  
Vol 47 (4) ◽  
pp. 1303-1326 ◽  
Author(s):  
Qingying Bu ◽  
Joe Diestel ◽  
Patrick Dowling ◽  
Eve Oja

Author(s):  
A. Sahami ◽  
E. Ghaderi ◽  
S. M. Kazemi Torbaghan ◽  
B. Olfatian Gillan

In this paper, we study Johnson pseudo-contractibility of second dual of some Banach algebras. We show that the semigroup algebra [Formula: see text] is Johnson pseudo-contractible if and only if [Formula: see text] is a finite amenable group, where [Formula: see text] is an archimedean semigroup. We also show that the matrix algebra [Formula: see text] is Johnson pseudo-contractible if and only if [Formula: see text] is finite. We study Johnson pseudo-contractibility of certain projective tensor product second duals Banach algebras.


Sign in / Sign up

Export Citation Format

Share Document