Approximating maps and exact C*-algebras

1982 ◽  
Vol 91 (2) ◽  
pp. 285-289 ◽  
Author(s):  
R. J. Archbold

Let A and E be C*-algebras, let A ⊗ B denote the minimal C*-tensor product, and let ε A *. The right slice map R: A ⊗ B → B is the unique bounded linear mapping with the property that R (a ⊗ b) = (a)b (a ε A, b ε B)(10). A triple (A, B, D), where D is a C*-subalgebra of B, is said to have the slice map property if whenever x ε A ⊗ B and R(x) D for all ε A* then x ε A ⊗ D). It is known that (A, B, D) has the slice map property whenever A is nuclear (11,13), but it appears to be still unknown whether the nuclearity of B will suffice (unless some extra condition is placed on D (l)).

Author(s):  
B. V. RAJARAMA BHAT ◽  
MICHAEL SKEIDE

In this paper we study the problem of dilating unital completely positive (CP) semigroups (quantum dynamical semigroups) to weak Markov flows and then to semigroups of endomorphisms (E0-semigroups) using the language of Hilbert modules. This is a very effective, representation free approach to dilation. In this way we are able to identify the right algebra (maximal in some sense) for endomorphisms to act. We are led inevitably to the notion of tensor product systems of Hilbert modules and units for them, generalizing Arveson's notions for Hilbert spaces. In the course of our investigations we are not only able to give new natural and transparent proofs of well-known facts for semigroups on [Formula: see text], but also extend the results immediately to much more general setups. For instance, Arveson classifies E0-semigroups on [Formula: see text] up to cocycle conjugacy by product systems of Hilbert spaces.5 We find that conservative CP-semigroups on arbitrary unital C*-algebras are classified up to cocycle conjugacy by product systems of Hilbert modules. Looking at other generalizations, it turns out that the role played by E0-semigroups on [Formula: see text] in dilation theory for CP-semigroups on [Formula: see text] is now played by E0-semigroups on [Formula: see text], the full algebra of adjointable operators on a Hilbert module E. We have CP-semigroup versions of many results proved by Paschke27 for CP maps.


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


2001 ◽  
Vol 44 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Narutaka Ozawa

AbstractWe present an example of a $C^*$-subalgebra $A$ of $\mathbb{B}(H)$ and a bounded linear map from $A$ to $\mathbb{B}(K)$ which does not admit any bounded linear extension. This generalizes the result of Robertson and gives the answer to a problem raised by Pisier. Using the same idea, we compute the exactness constants of some Q-spaces. This solves a problem raised by Oikhberg. We also construct a Q-space which is not locally reflexive.AMS 2000 Mathematics subject classification: Primary 46L05. Secondary 46L07


2019 ◽  
Vol 19 (01) ◽  
pp. 2050011 ◽  
Author(s):  
B. Ungor ◽  
S. Halicioglu ◽  
A. Harmanci ◽  
J. Marovt

Let [Formula: see text] be a ring. Motivated by a generalization of a well-known minus partial order to Rickart rings, we introduce a new relation on the power set [Formula: see text] of [Formula: see text] and show that this relation, which we call “the minus order on [Formula: see text]”, is a partial order when [Formula: see text] is a Baer ring. We similarly introduce and study properties of the star, the left-star, and the right-star partial orders on the power sets of Baer ∗-rings. We show that some ideals generated by projections of a von Neumann regular and Baer ∗-ring [Formula: see text] form a lattice with respect to the star partial order on [Formula: see text]. As a particular case, we present characterizations of these orders on the power set of [Formula: see text], the algebra of all bounded linear operators on a Hilbert space [Formula: see text].


2003 ◽  
Vol 68 (1) ◽  
pp. 169-173 ◽  
Author(s):  
Martin Mathieu

A linear mapping T from a subspace E of a Banach algebra into another Banach algebra is called spectrally bounded if there is a constant M ≥ 0 such that r(T x) ≤ Mr(x) for all x ∈ E, where r (·) denotes the spectral radius. We establish the equivalence of the following properties of a unital linear mapping T from a unital C* -algebra A into its centre:(a) T is spectrally bounded;(b) T is a spectrally bounded trace;(c) T is a bounded trace.


2001 ◽  
Vol 44 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Ajay Kumar

AbstractWe show that the involution $\theta(a\otimes b)=a^*\otimes b^*$ on the Haagerup tensor product $A\otimes_{\mrm{H}}B$ of $C^*$-algebras $A$ and $B$ is an isometry if and only if $A$ and $B$ are commutative. The involutive Banach algebra $A\otimes_{\mrm{H}}A$ arising from the involution $a\otimes b\to b^*\otimes a^*$ is also studied.AMS 2000 Mathematics subject classification: Primary 46L05; 46M05


2010 ◽  
Vol 54 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Ilja Gogić

AbstractLet A be a C*-algebra and let ΘA be the canonical contraction form the Haagerup tensor product of M(A) with itself to the space of completely bounded maps on A. In this paper we consider the following conditions on A: (a) A is a finitely generated module over the centre of M(A); (b) the image of ΘA is equal to the set E(A) of all elementary operators on A; and (c) the lengths of elementary operators on A are uniformly bounded. We show that A satisfies (a) if and only if it is a finite direct sum of unital homogeneous C*-algebras. We also show that if a separable A satisfies (b) or (c), then A is necessarily subhomogeneous and the C*-bundles corresponding to the homogeneous subquotients of A must be of finite type.


2014 ◽  
Vol 57 (3) ◽  
pp. 709-718 ◽  
Author(s):  
ABDELLATIF BOURHIM ◽  
JAVAD MASHREGHI

AbstractLet X and Y be infinite-dimensional complex Banach spaces, and ${\mathcal B}$(X) (resp. ${\mathcal B}$(Y)) be the algebra of all bounded linear operators on X (resp. on Y). For an operator T ∈ ${\mathcal B}$(X) and a vector x ∈ X, let σT(x) denote the local spectrum of T at x. For two nonzero vectors x0 ∈X and y0 ∈ Y, we show that a map ϕ from ${\mathcal B}$(X) onto ${\mathcal B}$(Y) satisfies $ \sigma_{\varphi(T)\varphi(S)}(y_0)~=~\sigma_{TS}(x_0),~(T,~S\in{\mathcal B}(X)), $ if and only if there exists a bijective bounded linear mapping A from X into Y such that Ax0 = y0 and either ϕ(T) = ATA−1 or ϕ(T) = -ATA−1 for all T ∈ ${\mathcal B}$(X).


Sign in / Sign up

Export Citation Format

Share Document