algebraic tensor product
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2018 ◽  
Vol 38 (1) ◽  
pp. 197 ◽  
Author(s):  
Dipankar Das ◽  
Nilakshi Goswami ◽  
Vishnu Narayan Mishra

For two real Banach algebras $\mathbb{A}_1$ and $\mathbb{A}_2$, let $K_p$ be the projective cone in $\mathbb{A}_1\otimes_\gamma \mathbb{A}_2$. Using this we define a cone norm on the algebraic tensor product of two vector spaces over the Banach algebra $\mathbb{A}_1\otimes_\gamma \mathbb{A}_2$ and discuss some properties. We derive some fixed point theorems in this projective cone normed tensor product space over Banach algebra with a suitable example. For two self mappings $S$ and $T$ on a cone Banach space over Banach algebra, the stability of the iteration scheme $x_{2n+1}=Sx_{2n}$, $x_{2n+2}=Tx_{2n+1},\;n=0,1,2,...$ converging to the common fixed point of $S$ and $T$ is also discussed here.



2015 ◽  
Vol 58 (2) ◽  
pp. 433-443 ◽  
Author(s):  
NARUTAKA OZAWA ◽  
GILLES PISIER

AbstractFor any pair M, N of von Neumann algebras such that the algebraic tensor product M ⊗ N admits more than one C*-norm, the cardinal of the set of C*-norms is at least 2ℵ0. Moreover, there is a family with cardinality 2ℵ0 of injective tensor product functors for C*-algebras in Kirchberg's sense. Let ${\mathbb B}$=∏nMn. We also show that, for any non-nuclear von Neumann algebra M⊂ ${\mathbb B}$(ℓ2), the set of C*-norms on ${\mathbb B}$ ⊗ M has cardinality equal to 22ℵ0.



2008 ◽  
Vol 50 (2) ◽  
pp. 209-216 ◽  
Author(s):  
SIMON WASSERMANN

AbstractIt is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗βA2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show that this result can fail if the conditions on the two masas do not both hold. This gives an answer to a long-standing question, but leaves open some other interesting problems, one of which turns out to have a potentially intriguing implication for the Kadison-Singer extension problem.



1997 ◽  
Vol 09 (03) ◽  
pp. 371-395
Author(s):  
Florian Nill

We give a review and some new relations on the structure of the monodromy algebra (also called loop algebra) associated with a quasitriangular Hopf algebra H. It is shown that as an algebra it coincides with the so-called braided group constructed by S. Majid on the dual of H. Gauge transformations act on monodromy algebras via the coadjoint action. Applying a result of Majid, the resulting crossed product is isomorphic to the Drinfeld double [Formula: see text]. Hence, under the so-called factorizability condition given by N. Reshetikhin and M. Semenov–Tian–Shansky, both algebras are isomorphic to the algebraic tensor product H ⊗ H. It is indicated that in this way the results of Alekseev et al. on lattice current algebras are consistent with the theory of more general Hopf spin chains given by K. Szlachányi and the author. In the Appendix the multi-loop algebras ℒm of Alekseev and Schomerus [3] are identified with braided tensor products of monodromy algebras in the sense of Majid, which leads to an explanation of the "bosonization formula" of [3] representing ℒm as H ⊗…⊗ H.



1988 ◽  
Vol 104 (1) ◽  
pp. 119-127 ◽  
Author(s):  
D. P. Blecher

When and ℬ are C*-algebras their algebraic tensor product ⊗ ℬ is a *-algebra in a natural way. Until recently, work on tensor products of C*-algebras has concentrated on norms α which make the completion ⊗α ℬ into a C*-algebra. The crucial role played by the Haagerup norm in the theory of operator spaces and completely bounded maps has produced some interest in more general norms (see [8; 12]). In this paper we investigate geometrical properties of algebra norms on ⊗ ℬ. By an ‘algebra norm’ we mean a norm which is sub-multiplicative: α(u.v) ≤ ≤ α(u).α(v).



1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].



1985 ◽  
Vol 37 (5) ◽  
pp. 769-784 ◽  
Author(s):  
John C. Quigg

In the duality for locally compact groups, much use is made of a version of the Hopf algebra technique in the context of von Neumann algebras, culminating in the theory of Kac algebras [6], [14]. It seems natural to ask whether something like a Hopf algebraic structure can be defined on the pre-dual of a Kac algebra. This leads to the question of whether the multiplication on a von Neumann algebra M, viewed as a linear map m from M ⊙ M (the algebraic tensor product) to M, can be pre-transposed to give a co-multiplication on the pre-dual M*, i.e., a linear map m* from M* to the completion of M* ⊙ M* with respect to some cross-norm. A related question is whether the multiplication on a C*-algebra A can be transposed to give a co-multiplication on the dual A*. Of course, this can be regarded as a special case of the preceding question by taking M = A**, where the double dual A** is identified with the enveloping von Neumann algebra of A.



1983 ◽  
Vol 27 (1) ◽  
pp. 115-119
Author(s):  
Lawrence Stedman

A Banach algebra A with radical R is said to have property (S) if the natural mapping from the algebraic tensor product A ⊗ A onto A2 is open, when A ⊗ A is given the protective norm. The purpose of this note is to provide a counterexample to Zinde's claim that when A is commutative and R is one dimensional the fulfillment of property (S) in A implies its fulfillment in the quotient algebra A/R.



1981 ◽  
Vol 90 (3) ◽  
pp. 445-463 ◽  
Author(s):  
T. K. Carne

The algebraic tensor product A1⊗A2 of two Banach algebras is an algebra in a natural way. There are certain norms α on this tensor product for which the multiplication is continuous so that the completion, A1αA2, is a Banach algebra. The representation theory of such tensor products is the subject of this paper. It will be shown that, under certain simple conditions, the tensor product of two semi-simple Banach algebras is semi-simple although, without these conditions, the result fails.



1978 ◽  
Vol 83 (2) ◽  
pp. 237-242 ◽  
Author(s):  
T. K. Carne ◽  
A. M. Tonge

When A1 and A2 are Banach algebras, their algebraic tensor product A1 ⊗ A2 has a natural multiplication. In this paper we investigate when the condition that A1 and A2 are ℒp-spaces constrains this multiplication to extend to the injective tensor product A1A2, making it a Banach algebra.



Sign in / Sign up

Export Citation Format

Share Document