Soluble-by-periodic skew linear groups

1984 ◽  
Vol 96 (3) ◽  
pp. 379-389 ◽  
Author(s):  
B. A. F. Wehrfritz

Let D be a division ring with central subfield F, n a positive integer and G a subgroup of GL(n, D) such that the F-subalgebra F[G] generated by G is the full matrix algebra Dn×n. If G is soluble then Snider [9] proves that G is abelian by locally finite. He also shows that this locally finite image of G can be any locally finite group. Of course not every abelian by locally finite group is soluble. This suggests that Snider's conclusion should apply to some wider class of groups.

1996 ◽  
Vol 38 (2) ◽  
pp. 171-176
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

A famous theorem of Kegel and Wielandt states that every finite group which is the product of two nilpotent subgroups is soluble (see [1], Theorem 2.4.3). On the other hand, it is an open question whether an arbitrary group factorized by two nilpotent subgroups satisfies some solubility condition, and only a few partial results are known on this subject. In particular, Kegel [6] obtained an affirmative answer in the case of linear groups, and in the same article he also proved that every locally finite group which is the product of two locally nilpotent FC-subgroups is locally soluble. Recall that a group G is said to be an FC-group if every element of G has only finitely many conjugates. Moreover, Kazarin [5] showed that if the locally finite group G = AB is factorized by an abelian subgroup A and a locally nilpotent subgroup B, then G is locally soluble. The aim of this article is to prove the following extension of the Kegel–Wielandt theorem to locally finite products of hypercentral groups.


1986 ◽  
Vol 29 (1) ◽  
pp. 101-113 ◽  
Author(s):  
B. A. F. Wehrfritz

Throughout this paper D denotes a division ring with centre F and n a positive integer. A subgroup G of GL(n,D) is absolutely irreducible if the F-subalgebra F[G] enerated by G is the full matrix ring Dn ×n. It is completely reducible (resp. irreducible) if row n-space Dn over D is completely reducible (resp. irreducible), as D–G bimodule in the obvious way. Absolutely irreducible skew linear groups have a more restricted structure than irreducible skew linear groups, see for example [7],[8], [8] and [10]. Here we make a start on elucidating the structure of locally nilpotent suchgroups.


2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Sergio Camp-Mora

AbstractA subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.


1979 ◽  
Vol 31 (4) ◽  
pp. 831-835 ◽  
Author(s):  
T. Nyman ◽  
G. Whaples

The well-known Hasse-Brauer-Noether theorem states that a simple algebra with center a number field k splits over k (i.e., is a full matrix algebra) if and only if it splits over the completion of k at every rank one valuation of k. It is natural to ask whether this principle can be extended to a broader class of fields. In particular, we prove here the following extension.


2012 ◽  
Vol 15 (1) ◽  
Author(s):  
Kıvanç Ersoy ◽  
Mahmut Kuzucuoğlu

AbstractHartley asked the following question: Is the centralizer of every finite subgroup in a simple non-linear locally finite group infinite? We answer a stronger version of this question for finite 𝒦-semisimple subgroups. Namely letMoreover we prove that if


2019 ◽  
Vol 29 (03) ◽  
pp. 603-614 ◽  
Author(s):  
Bui Xuan Hai ◽  
Huynh Viet Khanh

The study of the existence of free groups in skew linear groups have begun since the last decades of the 20th century. The starting point is the theorem of Tits (1972), now often referred to as Tits’ Alternative, stating that every finitely generated subgroup of the general linear group [Formula: see text] over a field [Formula: see text] either contains a non-cyclic free subgroup or it is solvable-by-finite. In this paper, we study the existence of non-cyclic free subgroups in maximal subgroups of an almost subnormal subgroup of the general skew linear group over a locally finite division ring.


2011 ◽  
Vol 10 (04) ◽  
pp. 615-622 ◽  
Author(s):  
M. RAMEZAN-NASSAB ◽  
D. KIANI

Let D be a division ring and N be a subnormal subgroup of D*. In this paper we prove that if M is a nilpotent maximal subgroup of N, then M′ is abelian. If, furthermore every element of M is algebraic over Z(D) and M′ ⊈ F* or M/Z(M) or M′ is finitely generated, then M is abelian. The second main result of this paper concerns the subgroups of matrix groups; assume D is a noncommutative division ring, n is a natural number, N is a subnormal subgroup of GLn(D), and M is a maximal subgroup of N. We show that if M is locally finite over Z(D)*, then M is either absolutely irreducible or abelian.


2005 ◽  
Vol 04 (02) ◽  
pp. 165-171
Author(s):  
HAKIMA MOUANIS

Let R be a ring and G a group of automorphisms of R. In this paper we investigate the transfer of the Von Neumman regularity from the total quotient ring of R to the total quotient ring of its fixed ring. We prove also that, for a locally finite group, Min(RG) inherits the compactness from Min(R), where Min(R) denotes the set of all minimal prime ideals of R. Finally, We explore some conditions under which we can transfer the PF-property (respectively, pseudo PF-property) from a ring to its fixed subring.


Author(s):  
A. Rae

1.1. Introduction. In this paper, we continue with the theme of (1): the relationships holding between the Sπ (i.e. maximal π) subgroups of a locally finite group and the various local systems of that group. In (1), we were mainly concerned with ‘good’ Sπ subgroups – those which reduce into some local system (and are said to be good with respect to that system). Here, on the other hand, we are concerned with a very much more special sort of Sπ subgroup.


Sign in / Sign up

Export Citation Format

Share Document