A NOTE ON FIXED RINGS

2005 ◽  
Vol 04 (02) ◽  
pp. 165-171
Author(s):  
HAKIMA MOUANIS

Let R be a ring and G a group of automorphisms of R. In this paper we investigate the transfer of the Von Neumman regularity from the total quotient ring of R to the total quotient ring of its fixed ring. We prove also that, for a locally finite group, Min(RG) inherits the compactness from Min(R), where Min(R) denotes the set of all minimal prime ideals of R. Finally, We explore some conditions under which we can transfer the PF-property (respectively, pseudo PF-property) from a ring to its fixed subring.

2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Sergio Camp-Mora

AbstractA subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.


1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


2012 ◽  
Vol 15 (1) ◽  
Author(s):  
Kıvanç Ersoy ◽  
Mahmut Kuzucuoğlu

AbstractHartley asked the following question: Is the centralizer of every finite subgroup in a simple non-linear locally finite group infinite? We answer a stronger version of this question for finite 𝒦-semisimple subgroups. Namely letMoreover we prove that if


1996 ◽  
Vol 38 (2) ◽  
pp. 171-176
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

A famous theorem of Kegel and Wielandt states that every finite group which is the product of two nilpotent subgroups is soluble (see [1], Theorem 2.4.3). On the other hand, it is an open question whether an arbitrary group factorized by two nilpotent subgroups satisfies some solubility condition, and only a few partial results are known on this subject. In particular, Kegel [6] obtained an affirmative answer in the case of linear groups, and in the same article he also proved that every locally finite group which is the product of two locally nilpotent FC-subgroups is locally soluble. Recall that a group G is said to be an FC-group if every element of G has only finitely many conjugates. Moreover, Kazarin [5] showed that if the locally finite group G = AB is factorized by an abelian subgroup A and a locally nilpotent subgroup B, then G is locally soluble. The aim of this article is to prove the following extension of the Kegel–Wielandt theorem to locally finite products of hypercentral groups.


Author(s):  
A. Rae

1.1. Introduction. In this paper, we continue with the theme of (1): the relationships holding between the Sπ (i.e. maximal π) subgroups of a locally finite group and the various local systems of that group. In (1), we were mainly concerned with ‘good’ Sπ subgroups – those which reduce into some local system (and are said to be good with respect to that system). Here, on the other hand, we are concerned with a very much more special sort of Sπ subgroup.


1984 ◽  
Vol 96 (3) ◽  
pp. 379-389 ◽  
Author(s):  
B. A. F. Wehrfritz

Let D be a division ring with central subfield F, n a positive integer and G a subgroup of GL(n, D) such that the F-subalgebra F[G] generated by G is the full matrix algebra Dn×n. If G is soluble then Snider [9] proves that G is abelian by locally finite. He also shows that this locally finite image of G can be any locally finite group. Of course not every abelian by locally finite group is soluble. This suggests that Snider's conclusion should apply to some wider class of groups.


2015 ◽  
Vol 23 ◽  
pp. 107
Author(s):  
A.A. Pypka ◽  
N.A. Turbay

We proved that if every subgroup of locally finite group is monopronormal, then this group is a $\overline{T}$-group.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahdi Meisami ◽  
Ali Rejali ◽  
Meisam Soleimani Malekan ◽  
Akram Yousofzadeh

Abstract Let 𝐺 be a discrete group. In 2001, Rosenblatt and Willis proved that 𝐺 is amenable if and only if every possible system of configuration equations admits a normalized solution. In this paper, we show independently that 𝐺 is locally finite if and only if every possible system of configuration equations admits a strictly positive solution. Also, we give a procedure to get equidecomposable subsets 𝐴 and 𝐵 of an infinite finitely generated or a locally finite group 𝐺 such that A ⊊ B A\subsetneq B , directly from a system of configuration equations not having a strictly positive solution.


Sign in / Sign up

Export Citation Format

Share Document