Groups of Wielandt length two

1991 ◽  
Vol 110 (2) ◽  
pp. 229-244 ◽  
Author(s):  
Elizabeth A. Ormerod

The Wielandt subgroup ω(G) of a group G is the subgroup of elements that normalize every subnormal subgroup of G. This subgroup, now named for Wielandt, was introduced by him in 1958 [15]. For a finite non-trivial group the Wielandt subgroup is always a non-trivial, characteristic subgroup. Thus it is possible to define the ascending Wielandt series for a finite group G which terminates at the group. Write ω0(G) = 1, and for i ≥ 1, ωi(G)/ωi–1(G) = ω(G/ωi–1(G)). The smallest n such that ωn(G) = G is called the Wielandt length of G, and the class of groups of Wielandt length at most n is denoted by . From the definition it follows that is closed under homomorphic images and taking normal subgroups. Nilpotent groups in are also closed under taking subgroups.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Inna N. Safonova ◽  
Alexander N. Skiba

Abstract Let 𝐺 be a finite group, and let 𝔉 be a hereditary saturated formation. We denote by Z F ⁢ ( G ) \mathbf{Z}_{\mathfrak{F}}(G) the product of all normal subgroups 𝑁 of 𝐺 such that every chief factor H / K H/K of 𝐺 below 𝑁 is 𝔉-central in 𝐺, that is, ( H / K ) ⋊ ( G / C G ⁢ ( H / K ) ) ∈ F (H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F} . A subgroup A ⩽ G A\leqslant G is said to be 𝔉-subnormal in the sense of Kegel, or 𝐾-𝔉-subnormal in 𝐺, if there is a subgroup chain A = A 0 ⩽ A 1 ⩽ ⋯ ⩽ A n = G A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\trianglelefteq A_{i} or A i / ( A i - 1 ) A i ∈ F A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F} for all i = 1 , … , n i=1,\ldots,n . In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let 𝔉 be a hereditary saturated formation containing all nilpotent groups, and let 𝑆 be a 𝐾-𝔉-subnormal subgroup of 𝐺. If Z F ⁢ ( E ) = 1 \mathbf{Z}_{\mathfrak{F}}(E)=1 for every subgroup 𝐸 of 𝐺 such that S ⩽ E S\leqslant E , then C G ⁢ ( D ) ⩽ D \mathbf{C}_{G}(D)\leqslant D , where D = S F D=S^{\mathfrak{F}} is the 𝔉-residual of 𝑆.


2007 ◽  
Vol 14 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A. Y. Alsheik Ahmad ◽  
J. J. Jaraden ◽  
Alexander N. Skiba

Let G be a finite group. We say that a subgroup H of G is [Formula: see text]-normal in G if G has a subnormal subgroup T such that TH = G and (H ∩ T)HG/HG is contained in the [Formula: see text]-hypercenter [Formula: see text] of G/HG, where [Formula: see text] is the class of the finite supersoluble groups. We study the structure of G under the assumption that some subgroups of G are [Formula: see text]-normal in G.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2021 ◽  
Vol 58 (2) ◽  
pp. 147-156
Author(s):  
Qingjun Kong ◽  
Xiuyun Guo

We introduce a new subgroup embedding property in a finite group called s∗-semipermutability. Suppose that G is a finite group and H is a subgroup of G. H is said to be s∗-semipermutable in G if there exists a subnormal subgroup K of G such that G = HK and H ∩ K is s-semipermutable in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < |D| < |P | and study the structure of G under the assumption that every subgroup H of P with |H | = |D| is s∗-semipermutable in G. Some recent results are generalized and unified.


2005 ◽  
Vol 78 (3) ◽  
pp. 429-439 ◽  
Author(s):  
Xiuyun Guo ◽  
K. P. Shum

AbstractA subgroup H of a finite group G is said to be c–supplemented in G if there exists a subgroup K of G such that G = HK and H∩K is contained in coreG (H). In this paper some results for finite p–nilpotent groups are given based on some subgroups of Pc–supplemented in G, where p is a prime factor of the order of G and P is a Sylow p–subgroup of G. We also give some applications of these results.


2019 ◽  
Vol 22 (6) ◽  
pp. 1035-1047 ◽  
Author(s):  
Zhang Chi ◽  
Alexander N. Skiba

Abstract Let {\mathfrak{F}} be a non-empty class of groups, let G be a finite group and let {\mathcal{L}(G)} be the lattice of all subgroups of G. A chief {H/K} factor of G is {\mathfrak{F}} -central in G if {(H/K)\rtimes(G/C_{G}(H/K))\in\mathfrak{F}} . Let {\mathcal{L}_{c\mathfrak{F}}(G)} be the set of all subgroups A of G such that every chief factor {H/K} of G between {A_{G}} and {A^{G}} is {\mathfrak{F}} -central in G; {\mathcal{L}_{\mathfrak{F}}(G)} denotes the set of all subgroups A of G with {A^{G}/A_{G}\in\mathfrak{F}} . We prove that the set {\mathcal{L}_{c\mathfrak{F}}(G)} and, in the case when {\mathfrak{F}} is a Fitting formation, the set {\mathcal{L}_{\mathfrak{F}}(G)} are sublattices of the lattice {\mathcal{L}(G)} . We also study conditions under which the lattice {\mathcal{L}_{c\mathfrak{N}}(G)} and the lattice of all subnormal subgroup of G are modular.


Sign in / Sign up

Export Citation Format

Share Document