scholarly journals Certain normal subgroups of the Frattini subgroup of a finite group

1974 ◽  
Vol 77 (4) ◽  
pp. 382-386 ◽  
Author(s):  
Robert W van der Waall
1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


1989 ◽  
Vol 12 (2) ◽  
pp. 263-266
Author(s):  
Prabir Bhattacharya ◽  
N. P. Mukherjee

For a finite group G and an arbitrary prime p, letSP(G)denote the intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we setSP(G)= G. Some properties of G are considered involvingSP(G). In particular, we obtain a characterization of G when each M in the definition ofSP(G)is nilpotent.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


2017 ◽  
Vol 470 ◽  
pp. 254-262 ◽  
Author(s):  
Stefanos Aivazidis ◽  
Adolfo Ballester-Bolinches

1984 ◽  
Vol 27 (1) ◽  
pp. 7-9 ◽  
Author(s):  
G. Karpilovsky

In what follows, character means irreducible complex character.Let G be a finite group and let % be a character of a normal subgroup N. If χ extends to a character of G then χ is stabilised by G, but the converse is false. The aim of this paper is to prove the following theorem which gives a sufficient condition for χ to be extended to a character of G.


1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


1969 ◽  
Vol 1 (3) ◽  
pp. 315-317 ◽  
Author(s):  
Sidney A. Morris ◽  
H.B. Thompson

It has been shown by D. Stephen that the number N of open sets in a non-discrete topology on a finite set with n elements is not greater than 3 × 2n-2.We show that for admissable topologies on a finite group N ≦ 2n/r, where r is the least order of its non-trivial normal subgroups. This is clearly a sharper bound.


1985 ◽  
Vol 37 (5) ◽  
pp. 934-962 ◽  
Author(s):  
Alan E. Parks

A character of a finite group G is monomial if it is induced from a linear (degree one) character of a subgroup of G. A group G is an M-group if all its complex irreducible characters (the set Irr(G)) are monomial.In [1], Dade gave an example of an M-group with a normal subgroup which is itself not an M-group. In his group G, the supersolvable residual N is an extra special 2-group and G/N is supersolvable of even order. Moreover, the prime 2 is used in such a way that no analogous construction is possible in the case that |N| or |G:N| is odd. This led Isaacs in [8] and Dade in [2] to consider the effect of certain “oddness“ hypotheses in the study of monomial characters.Our main results are in the same spirit. Although our techniques seem to require a restrictive assumption on the supersolvable residual of the groups we consider, our theorems provide more evidence that under fairly general circumstances normal subgroups of M-groups should be M-groups.


Sign in / Sign up

Export Citation Format

Share Document