scholarly journals On decomposition numbers and Alvis–Curtis duality

2007 ◽  
Vol 143 (3) ◽  
pp. 509-520
Author(s):  
BERND ACKERMANN ◽  
SIBYLLE SCHROLL

AbstractWe show that for general linear groups GLn(q) as well as for q-Schur algebras the knowledge of the modular Alvis–Curtis duality over fields of characteristic ℓ, ℓ ∤ q, is equivalent to the knowledge of the decomposition numbers.

2001 ◽  
Vol 71 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Karin Erdmann

AbstractLet K be a field of characteristic p. The permutation modules associated to partitions of n, usually denoted as Mλ, play a central role not only for symmetric groups but also for general linear groups, via Schur algebras. The indecomposable direct summands of these Mλ were parametrized by James; they are now known as Young modules; and Klyachko and Grabmeier developed a ‘Green correspondence’ for Young modules. The original parametrization used Schur algebras; and James remarked that he did not know a proof using only the representation theory of symmetric groups. We will give such proof, and we will at the same time also prove the correspondence result, by using only the Brauer construction, which is valid for arbitrary finite groups.


1996 ◽  
Vol 119 (3) ◽  
pp. 383-402 ◽  
Author(s):  
Matthew J. Richards

The theorem which is still known as Nakayama's Conjecture shows how the modular characters of the symmetric group Sn can be divided into blocks of various weights, those with the same weight having similar properties. In fact, all blocks of weight one have essentially the same decomposition numbers and these are easy to describe. In recent work, Scopes [16, 17] has shown that there are essentially only finitely many possibilities for the decomposition numbers for blocks of any given weight, and has given a bound for the number. We develop the combinatorics implicit in her work, and so establish an improved bound.


Author(s):  
S. Donkin

In [5] James proved theorems on the decomposition numbers, for the general linear groups and symmetric groups, involving the removal of the first row or column from partitions. In [1] we gave different proofs of these theorems based on a result valid for the decomposition numbers of any reductive group. (I am grateful to J. C. Jantzen for pointing out that the Theorem in [1] may also be derived from the universal Chevalley group case, which follows from the proof of 1 ·18 Satz of [6] – the analogue of equation (1) of the proof being obtained by means of the natural isometry (with respect to contra-variant forms) between a certain sum of weight spaces of a Weyl module V(λ) of highest weight λ and the Weyl module corresponding to λ for the Chevalley group determined by the subset of the base involved.) However, we have recently noticed that this result for reductive groups, even when specialized to the case of GLn, gives a substantial generalization of James's Theorems. This generalization, which we give here, is an expression for the decomposition number [λ: μ] for a pair of partitions λ, μ whose diagrams can be simultaneously cut by a horizontal (or vertical) line so as to leave the same number of nodes above the line (or to the left of the line for a vertical cut) in both cases. Cutting between the first and second rows gives James's principal of row removal ([5], theorem 1) and cutting between the first and second column gives his principle of column removal ([5], theorem 2). Another special case of our horizontal result, involving the removal of bottom rows of a pair of partitions, is stated in [7], Satz 8.


Author(s):  
STEPHEN R. DOTY ◽  
DANIEL K. NAKANO

Schur algebras are certain finite-dimensional algebras that completely control the polynomial representation theory of the general linear groups over an infinite field. Infinitesimal Schur algebras are truncated versions of the classical Schur algebras which control the polynomial representation theory of the Frobenius kernels of general linear groups. In this paper we use some elementary results on symmetric powers to classify the semisimple Schur algebras. We then classify the semisimple infinitesimal Schur algebras as well.


Sign in / Sign up

Export Citation Format

Share Document