general linear groups
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Kei Yuen Chan

Abstract We prove a local Gan–Gross–Prasad conjecture on predicting the branching law for the non-tempered representations of general linear groups in the case of non-Archimedean fields. We also generalize to Bessel and Fourier–Jacobi models and study a possible generalization to Ext-branching laws.


2021 ◽  
Author(s):  
Henning Krause

Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dongwen Liu ◽  
Feng Su ◽  
Binyong Sun

Abstract We prove that the local Rankin–Selberg integrals for principal series representations of the general linear groups agree with certain simple integrals over the Rankin–Selberg subgroups, up to certain constants given by the local gamma factors.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Fix $\mathbb Z/2$ is the prime field of two elements and write $\mathcal A_2$ for the mod $2$ Steenrod algebra. Denote by $GL_d:= GL(d, \mathbb Z/2)$ the general linear group of rank $d$ over $\mathbb Z/2$ and by $\mathscr P_d$ the polynomial algebra $\mathbb Z/2[x_1, x_2, \ldots, x_d],$ which is viewed as a connected unstable $\mathcal A_2$-module on $d$ generators of degree one. We study the Peterson "hit problem" of finding the minimal set of $\mathcal A_2$-generators for $\mathscr P_d.$ It is equivalent to determining a $\mathbb Z/2$-basis for the space of "cohits"$$Q\mathscr P_d := \mathbb Z/2\otimes_{\mathcal A_2} \mathscr P_d \cong \mathscr P_d/\mathcal A_2^+\mathscr P_d.$$ This $Q\mathscr P_d$ is considered as a form modular representation of $GL_d$ over $\mathbb Z/2.$ The problem for $d= 5$ is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree $n = r(2^t -1) + 2^ts$ with $r = d = 5,\ s =8$ and $t$ an arbitrary non-negative integer. An application of this study to the cases $t = 0$ and $t = 1$ shows that the Singer algebraic transfer is an isomorphism in the bidegrees $(5, 5+(13.2^{0} - 5))$ and $(5, 5+(13.2^{1} - 5)).$ Moreover, the result when $t\geq 2$ was also discussed. Here, the Singer transfer of rank $d$ is a $\mathbb Z/2$-algebra homomorphism from $GL_d$-coinvariants of certain subspaces of $Q\mathscr P_d$ to the cohomology groups of the Steenrod algebra, ${\rm Ext}_{\mathcal A_2}^{d, d+*}(\mathbb Z/2, \mathbb Z/2).$ It is one of the useful tools for studying mysterious Ext groups and the Kervaire invariant one problem.


2021 ◽  
Vol 25 (22) ◽  
pp. 644-678
Author(s):  
Maxim Gurevich ◽  
Erez Lapid

We construct new “standard modules” for the representations of general linear groups over a local non-archimedean field. The construction uses a modified Robinson–Schensted–Knuth correspondence for Zelevinsky’s multisegments. Typically, the new class categorifies the basis of Doubilet, Rota, and Stein (DRS) for matrix polynomial rings, indexed by bitableaux. Hence, our main result provides a link between the dual canonical basis (coming from quantum groups) and the DRS basis.


Author(s):  
Saba Inam ◽  
Shamsa Kanwal ◽  
Rashid Ali

Security of some present day public key cryptosystem (PKC) is based on general linear groups as it is a good choice for developing such types of cryptosystems. This study presents various public key encryption schemes based on general linear groups. Different techniques including automorphisms in connection with conjugacy search problem and its generalization are used to develop these schemes. Further, the grouprings are chosen as a platform to enhance the security and efficiency. Numerous aspects related to our new proposal are also elaborated.


Sign in / Sign up

Export Citation Format

Share Document