scholarly journals Attractors with irrational rotation number

Author(s):  
LUIS HERNÁNDEZ-CORBATO ◽  
RAFAEL ORTEGA ◽  
FRANCISCO R. RUIZ DEL PORTAL

AbstractLet h: 2 → 2 be a dissipative and orientation preserving homeomorphism having an asymptotically stable fixed point. Let U be the region of attraction and assume that it is proper and unbounded. Using Carathéodory's prime ends theory one can associate a rotation number, ρ, to h|U. We prove that any map in the above conditions and with ρ ∉ induces a Denjoy homeomorphism in the circle of prime ends. We also present some explicit examples of maps in this class and we show that, if the infinity point is accessible by an arc in U, ρ ∉ if and only if Per(h) = Fix(h) = {p}.

2014 ◽  
Vol 24 (01) ◽  
pp. 1450012 ◽  
Author(s):  
Ya-Nan Wang ◽  
Wen-Xin Qin

In this paper, we show that a necessary condition for nonminimal Aubry–Mather sets of monotone recurrence relations is that the set of all Birkhoff minimizers with some irrational rotation number does not constitute a foliation, i.e. the gaps of the minimal Aubry–Mather set are not filled up with Birkhoff minimizers.


1985 ◽  
Vol 5 (1) ◽  
pp. 27-46 ◽  
Author(s):  
Colin Boyd

AbstractA class of vector fields on the 2-torus, which includes Cherry fields, is studied. Natural paths through this class are defined and it is shown that the parameters for which the vector field is unstable is the closure ofhas irrational rotation number}, where ƒ is a certain map of the circle andRtis rotation throught. This is shown to be a Cantor set of zero Hausdorff dimension. The Cherry fields are shown to form a family of codimension one submanifolds of the set of vector fields. The natural paths are shown to be stable paths.


2005 ◽  
Vol 15 (11) ◽  
pp. 3675-3689 ◽  
Author(s):  
L. M. LERMAN

We prove several results of the orbit behavior of skew product diffeomorphisms generated by quasi-periodic differential systems. The first diffeomorphism is derived from a periodic differential equation on the circle by means of a construction proposed by Z. Opial to get a scalar quasi-periodic equation with all its solutions bounded but without an almost periodic solution. We consider both possible cases for the irrational rotation number, transitive and singular (intransitive). The main result for a transitive case is that the related skew product diffeomorphism has a foliation into invariant curves with pure irrational rotation on each curve (being the same for each curve). For intransitive case, we get invariant sets of two types: a collection of continuous invariant curves and invariant sets being dimensionally inhomogeneous ones.Section 3 is devoted to perturbations of a skew product diffeomorphism over an irrational rotation being initially foliated into invariant curves. We prove an analog of Poincaré–Pontryagin theorem which sets conditions when a perturbation of a one-degree-of-freedom Hamiltonian system (given in an annulus and written down in action-angle variables) has limit cycles. Our theorem provides sufficient conditions when a perturbation of a foliated skew product diffeomorphism has isolated invariant curves (asymptotically stable or unstable).In Sec. 4 we present some results on the geometry of skew product diffeomorphisms derived by a quasi-periodic Riccati equation.


1999 ◽  
Vol 19 (1) ◽  
pp. 227-257 ◽  
Author(s):  
MICHAEL YAMPOLSKY

We use the methods developed with Lyubich for proving complex bounds for real quadratics to extend de Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows.As another application of our methods we present a new proof of a theorem of Petersen on local connectivity of some Siegel Julia sets.


2020 ◽  
Vol 16 (4) ◽  
pp. 651-672
Author(s):  
B. Ndawa Tangue ◽  

We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$. We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1\backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.


Author(s):  
Utkir A. Safarov

We study a conjugacy between two critical circle homeomorphisms with irrational rotation number. Let fi, i = 1, 2 be a C3 circle homeomorphisms with critical point x(i) cr of the order 2mi + 1. We prove that if 2m1 + 1 ̸= 2m2 + 1, then conjugating between f1 and f2 is a singular function. Keywords: circle homeomorphism, critical point, conjugating map, rotation number, singular function


2013 ◽  
Vol 13 (1) ◽  
pp. 19-41 ◽  
Author(s):  
M.-C. Arnaud

AbstractVery few things are known about the curves that are at the boundary of the instability zones of symplectic twist maps. It is known that in general they have an irrational rotation number and that they cannot be KAM curves. We address the following questions. Can they be very smooth? Can they be non-${C}^{1} $?Can they have a Diophantine or a Liouville rotation number? We give a partial answer for${C}^{1} $and${C}^{2} $twist maps.In Theorem 1, we construct a${C}^{2} $symplectic twist map$f$of the annulus that has an essential invariant curve$\Gamma $such that$\bullet $ $\Gamma $is not differentiable;$\bullet $the dynamics of${f}_{\vert \Gamma } $is conjugated to the one of a Denjoy counter-example;$\bullet $ $\Gamma $is at the boundary of an instability zone for$f$.Using the Hayashi connecting lemma, we prove in Theroem 2 that any symplectic twist map restricted to an essential invariant curve can be embedded as the dynamics along a boundary of an instability zone for some${C}^{1} $symplectic twist map.


Sign in / Sign up

Export Citation Format

Share Document