scholarly journals Cubical geometry in the polygonalisation complex

Author(s):  
MARK C. BELL ◽  
VALENTINA DISARLO ◽  
ROBERT TANG

AbstractWe introduce the polygonalisation complex of a surface, a cube complex whose vertices correspond to polygonalisations. This is a geometric model for the mapping class group and it is motivated by works of Harer, Mosher and Penner. Using properties of the flip graph, we show that the midcubes in the polygonalisation complex can be extended to a family of embedded and separating hyperplanes, parametrised by the arcs in the surface.We study the crossing graph of these hyperplanes and prove that it is quasi-isometric to the arc complex. We use the crossing graph to prove that, generically, different surfaces have different polygonalisation complexes. The polygonalisation complex is not CAT(0), but we can characterise the vertices where Gromov's link condition fails. This gives a tool for proving that, generically, the automorphism group of the polygonalisation complex is the (extended) mapping class group of the surface.

2020 ◽  
Vol 26 (5) ◽  
Author(s):  
Manuel Krannich

AbstractWe compute the mapping class group of the manifolds $$\sharp ^g(S^{2k+1}\times S^{2k+1})$$ ♯ g ( S 2 k + 1 × S 2 k + 1 ) for $$k>0$$ k > 0 in terms of the automorphism group of the middle homology and the group of homotopy $$(4k+3)$$ ( 4 k + 3 ) -spheres. We furthermore identify its Torelli subgroup, determine the abelianisations, and relate our results to the group of homotopy equivalences of these manifolds.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650022
Author(s):  
Byung Hee An

In this paper, we compute the automorphism groups [Formula: see text] and [Formula: see text] of braid groups [Formula: see text] and [Formula: see text] on every orientable surface [Formula: see text], which are isomorphic to group extensions of the extended mapping class group [Formula: see text] by the transvection subgroup except for a few cases. We also prove that [Formula: see text] is always a characteristic subgroup of [Formula: see text], unless [Formula: see text] is a twice-punctured sphere and [Formula: see text].


2017 ◽  
Vol 26 (11) ◽  
pp. 1750061
Author(s):  
Xiaoming Du

Let [Formula: see text] be the closed-oriented surface of genus [Formula: see text] and let [Formula: see text] be the extended mapping class group of [Formula: see text]. When the genus is at least 5, we prove that [Formula: see text] can be generated by two torsion elements. One of these generators is of order [Formula: see text], and the other one is of order [Formula: see text].


2009 ◽  
Vol 148 (3) ◽  
pp. 473-483 ◽  
Author(s):  
MUSTAFA KORKMAZ ◽  
ATHANASE PAPADOPOULOS

AbstractWe study the arc and curve complex AC(S) of an oriented connected surface S of finite type with punctures. We show that if the surface is not a sphere with one, two or three punctures nor a torus with one puncture, then the simplicial automorphism group of AC(S) coincides with the natural image of the extended mapping class group of S in that group. We also show that for any vertex of AC(S), the combinatorial structure of the link of that vertex characterizes the type of a curve or of an arc in S that represents that vertex. We also give a proof of the fact if S is not a sphere with at most three punctures, then the natural embedding of the curve complex of S in AC(S) is a quasi-isometry. The last result, at least under some slightly more restrictive conditions on S, was already known. As a corollary, AC(S) is Gromov-hyperbolic.


2013 ◽  
Vol 05 (01) ◽  
pp. 57-85 ◽  
Author(s):  
MATTHEW B. DAY

We extend each higher Johnson homomorphism to a crossed homomorphism from the automorphism group of a finite-rank free group to a finite-rank abelian group. We also extend each Morita homomorphism to a crossed homomorphism from the mapping class group of once-bounded surface to a finite-rank abelian group. This improves on the author's previous results [5]. To prove the first result, we express the higher Johnson homomorphisms as coboundary maps in group cohomology. Our methods involve the topology of nilpotent homogeneous spaces and lattices in nilpotent Lie algebras. In particular, we develop a notion of the "polynomial straightening" of a singular homology chain in a nilpotent homogeneous space.


2020 ◽  
pp. 1-15
Author(s):  
Asaf Hadari

Let [Formula: see text] be either the mapping class group of a closed surface of genus [Formula: see text], or the automorphism group of a free group of rank [Formula: see text]. Given any homological representation [Formula: see text] of [Formula: see text] corresponding to a finite cover, and any term [Formula: see text] of the Johnson filtration, we show that [Formula: see text] has finite index in [Formula: see text], the Torelli subgroup of [Formula: see text]. Since [Formula: see text] for [Formula: see text], this implies for instance that no such representation is faithful.


2006 ◽  
Vol 15 (09) ◽  
pp. 1231-1244 ◽  
Author(s):  
PING ZHANG

Consider a surface braid group of n strings as a subgroup of the isotopy group of homeomorphisms of the surface permuting n fixed distinguished points. Each automorphism of the surface braid group (respectively, of the special surface braid group) is shown to be a conjugate action on the braid group (respectively, on the special braid group) induced by a homeomorphism of the underlying surface if the closed surface, either orientable or non-orientable, is of negative Euler characteristic. In other words, the group of automorphisms of such a surface braid group is isomorphic to the extended mapping class group of the surface with n punctures, while the outer automorphism group of the surface braid group is isomorphic to the extended mapping class group of the closed surface itself.


2010 ◽  
Vol 20 (03) ◽  
pp. 437-456 ◽  
Author(s):  
FERIHE ATALAN

Let Ng be the connected closed nonorientable surface of genus g ≥ 5 and Mod (Ng) denote the mapping class group of Ng. We prove that the outer automorphism group of Mod (Ng) is cyclic.


Sign in / Sign up

Export Citation Format

Share Document