reciprocity theorem
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 26)

H-INDEX

29
(FIVE YEARS 1)

Ultrasonics ◽  
2022 ◽  
Vol 118 ◽  
pp. 106578
Author(s):  
Lei Xu ◽  
Kai Wang ◽  
Yiyin Su ◽  
Yi He ◽  
Jianwei Yang ◽  
...  

2021 ◽  
Vol 2086 (1) ◽  
pp. 012075
Author(s):  
D S Arteev ◽  
A V Sakharov ◽  
A E Nikolaev ◽  
E E Zavarin ◽  
W V Lundin ◽  
...  

Abstract The paper presents the derivation of a model for minority carriers collection based on the reciprocity theorem and its application for determination of hole diffusion length in n-GaN by means of photoluminescence. The estimated hole diffusion lengths at room temperature are 110 nm and 194 nm in the case of low and high excitation, respectively, which could be explained by saturation of non-radiative recombination centers in bulk GaN and at the surface with photogenerated carriers.


Author(s):  
Xiao Hu ◽  
Yang Qiu ◽  
Qing-Lin Xu ◽  
Jin Tian

This paper presents an efficient hybrid method consisting of Lorentz reciprocity theorem, finite-difference-time-domain (FDTD) method, thin wire model, transmission line (TL) equations and transfer impedance model, which can be utilized to analyze the system-level transient responses of the microstrip antenna system with antenna, metallic enclosures, braided shielded cable, and lumped element, when illuminated by an external electromagnetic pulse (EMP). In order to avoid over-fine mesh generation and repeated modeling of the antenna in multiple simulations, Lorentz reciprocity theorem is employed to extract an equivalent source model of antenna coupling, thereby improving the computational efficiency. Then, the transfer impedance model and thin wire model are incorporated into the FDTD-TL method efficiently to deal with the back-door coupling through the shielding layer of feeding coaxial cable. Finally, the hybrid FDTD method combined with the extracted equivalent source of antenna coupling is utilized to solve the coupling responses of the whole antenna system. The results of numerical simulation are verified by comparing with the simulation results of CST CS. Then, considering the influence of different incident conditions of external EMP, the characteristics of the coupling response of the system are analyzed. The obtained coupling response information demonstrate that the proposed method is available for further designing electromagnetic protection of the inner circuits of the microstrip antenna system against the impact of external EMP.


2020 ◽  
Vol 44 (6) ◽  
pp. 893-900
Author(s):  
A.V. Dyshlyuk ◽  
A.A. Bogdanov ◽  
O.B. Vitirk

In this work, we demonstrate a simple analytical approach to the problem of surface plasmon polaritons excitation with a metallic nanoantenna placed above a metal surface. The method uses the reciprocity theorem and is similar to the calculation of amplitudes of dielectric waveguide modes excited by a current distribution. To maximize clarity of the demonstration, we formulate the problem in a simple two-dimensional geometry. The analytical results are shown to agree well with the numerical solution obtained by finite elements in frequency domain and finite difference in time domain methods.


Sign in / Sign up

Export Citation Format

Share Document