scholarly journals On tensor factorisation for representations of finite groups

2004 ◽  
Vol 69 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Emanuele Pacifici

We prove that, given a quasi-primitive complex representation D for a finite group G, the possible ways of decomposing D as an inner tensor product of two projective representations of G are parametrised in terms of the group structure of G. More explicitly, we construct a bijection between the set of such decompositions and a particular interval in the lattice of normal subgroups of G.

1981 ◽  
Vol 22 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Shigeo Koshitani

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1. Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (l)–(4) are equivalent:(1) G is p-solvable of p-length 1.(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to NG(P).(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to NG(P).(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to NG(P).


Author(s):  
P. N. Hoffmann ◽  
J. F. Humphreys

The projective representations of a finite group G over a field K are divided into sets, each parametrized by an element of the group H2(G, Kx). The latter is the Schur multiplier M(G) when K = ℂ.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


2013 ◽  
Vol 88 (2) ◽  
pp. 243-249 ◽  
Author(s):  
FIRUZ KAMALOV

AbstractWe study the space of irreducible representations of a crossed product ${C}^{\ast } $-algebra ${\mathop{A\rtimes }\nolimits}_{\sigma } G$, where $G$ is a finite group. We construct a space $\widetilde {\Gamma } $ which consists of pairs of irreducible representations of $A$ and irreducible projective representations of subgroups of $G$. We show that there is a natural action of $G$ on $\widetilde {\Gamma } $ and that the orbit space $G\setminus \widetilde {\Gamma } $ corresponds bijectively to the dual of ${\mathop{A\rtimes }\nolimits}_{\sigma } G$.


1969 ◽  
Vol 1 (3) ◽  
pp. 315-317 ◽  
Author(s):  
Sidney A. Morris ◽  
H.B. Thompson

It has been shown by D. Stephen that the number N of open sets in a non-discrete topology on a finite set with n elements is not greater than 3 × 2n-2.We show that for admissable topologies on a finite group N ≦ 2n/r, where r is the least order of its non-trivial normal subgroups. This is clearly a sharper bound.


1980 ◽  
Vol 32 (3) ◽  
pp. 714-733 ◽  
Author(s):  
N. B. Tinberg

1. Introduction.Let p be a prime number. A finite group G = (G, B, N, R, U) is called a split(B, N)-pair of characteristic p and rank n if(i) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where H= B ⋂ N and the Weyl group W= N/H is generated by the set R= ﹛ω 1,… , ω n) of “special generators.”(ii) H= ⋂n∈N n-1Bn(iii) There exists a p-subgroup U of G such that B = UH is a semidirect product, and H is abelian with order prime to p.A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)- pair. (Unsaturated means “not necessarily saturated”.)


1975 ◽  
Vol 27 (6) ◽  
pp. 1349-1354
Author(s):  
G. de B. Robinson

Of recent years the author has been interested in developing a representation theory of the algebra of representations [5; 6] of a finite group G, and dually of its classes [7]. In this paper Frobenius’ Reciprocity Theorem provides a starting point for the introduction of the inverses R-1 and I-1 of the restricting and inducing operators R and I. The condition under which such inverse operations are available is that the classes of G do not splitin the subgroup Ĝ. When this condition is satisfied the application of these operations to inner products is of interest.


2007 ◽  
Vol 14 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A. Y. Alsheik Ahmad ◽  
J. J. Jaraden ◽  
Alexander N. Skiba

Let G be a finite group. We say that a subgroup H of G is [Formula: see text]-normal in G if G has a subnormal subgroup T such that TH = G and (H ∩ T)HG/HG is contained in the [Formula: see text]-hypercenter [Formula: see text] of G/HG, where [Formula: see text] is the class of the finite supersoluble groups. We study the structure of G under the assumption that some subgroups of G are [Formula: see text]-normal in G.


1979 ◽  
Vol 86 (3) ◽  
pp. 413-419 ◽  
Author(s):  
J. F. Humphreys

Let G bea finite group, let C1, …, Cn be the cyclic subgroups of G and let 1i be the identity linear character of Ci (1 ≤ i ≤ n). It is a well-known result of Artin ((l), 39·1) that a character x of a linear representation of G over the rational numbers may be writtenwhere a1, …, an are integers. In this note, we establish an analogue of this result for characters of projective representations over the rational numbers.


Sign in / Sign up

Export Citation Format

Share Document