scholarly journals Modular Representations of Finite Groups with Unsaturated Split (B,N)-Pairs

1980 ◽  
Vol 32 (3) ◽  
pp. 714-733 ◽  
Author(s):  
N. B. Tinberg

1. Introduction.Let p be a prime number. A finite group G = (G, B, N, R, U) is called a split(B, N)-pair of characteristic p and rank n if(i) G has a (B, N)-pair (see [3, Definition 2.1, p. B-8]) where H= B ⋂ N and the Weyl group W= N/H is generated by the set R= ﹛ω 1,… , ω n) of “special generators.”(ii) H= ⋂n∈N n-1Bn(iii) There exists a p-subgroup U of G such that B = UH is a semidirect product, and H is abelian with order prime to p.A (B, N)-pair satisfying (ii) is called a saturated (B, N)-pair. We call a finite group G which satisfies (i) and (iii) an unsaturated split (B, N)- pair. (Unsaturated means “not necessarily saturated”.)

1981 ◽  
Vol 22 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Shigeo Koshitani

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1. Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (l)–(4) are equivalent:(1) G is p-solvable of p-length 1.(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to NG(P).(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to NG(P).(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to NG(P).


1990 ◽  
Vol 32 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Shigeo Koshitani

About fifteen years ago I. M. Isaacs and S. D. Smith [9] gave several character-theoretic characterizations of finite p-solvable groups G with p-length one, where p is a prime number. They proved that for a finite group G with a Sylow p-subgroup P, the following four conditions (a)–(d) are equivalent.


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi ◽  
Morteza Jafarpour

Let [Formula: see text] be a finite group and [Formula: see text], where [Formula: see text] denotes the order of [Formula: see text]. The function [Formula: see text] was introduced by Tărnăuceanu. In [M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. (2020), https://doi.org/10.1007/s11856-020-2033-9 ], some lower bounds for [Formula: see text] are determined such that if [Formula: see text] is greater than each of them, then [Formula: see text] is cyclic, abelian, nilpotent, supersolvable and solvable. Also, an open problem aroused about finite groups [Formula: see text] such that [Formula: see text] is equal to the amount of each lower bound. In this paper, we give an answer to the equality condition which is a partial answer to the open problem posed by Tărnăuceanu. Also, in [M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra (2020), https://doi.org/10.1080/00927872.2020.1788571 ], it is shown that: If [Formula: see text], where [Formula: see text] is a prime number, then [Formula: see text] and [Formula: see text] is cyclic. As the next result, we show that if [Formula: see text] is not a [Formula: see text]-nilpotent group and [Formula: see text], then [Formula: see text].


1981 ◽  
Vol 22 (1) ◽  
pp. 89-99 ◽  
Author(s):  
J. F. Humphreys

In this paper, which is a continuation of [4], the necessary theoretical background is given to enable the calculation of the irreducible Brauer projective characters of a given finite group to be carried out. As an example, this calculation is done for the alternating group A (7) in §3. In a future paper the calculations for the Mathieu groups will be presented.


1975 ◽  
Vol 27 (6) ◽  
pp. 1349-1354
Author(s):  
G. de B. Robinson

Of recent years the author has been interested in developing a representation theory of the algebra of representations [5; 6] of a finite group G, and dually of its classes [7]. In this paper Frobenius’ Reciprocity Theorem provides a starting point for the introduction of the inverses R-1 and I-1 of the restricting and inducing operators R and I. The condition under which such inverse operations are available is that the classes of G do not splitin the subgroup Ĝ. When this condition is satisfied the application of these operations to inner products is of interest.


2001 ◽  
Vol 64 (2) ◽  
pp. 472-488 ◽  
Author(s):  
D. NOTBOHM

For a prime p, a homology decomposition of the classifying space BG of a finite group G consist of a functor F : D → spaces from a small category into the category of spaces and a map hocolim F → BG from the homotopy colimit to BG that induces an isomorphism in mod-p homology. Associated to a modular representation G → Gl(n; [ ]p), a family of subgroups is constructed that is closed under conjugation, which gives rise to three different homology decompositions, the so-called subgroup, centralizer and normalizer decompositions. For an action of G on an [ ]p-vector space V, this collection consists of all subgroups of G with nontrivial p-Sylow subgroup which fix nontrivial (proper) subspaces of V pointwise. These decomposition formulas connect the modular representation theory of G with the homotopy theory of BG.


2013 ◽  
Vol 88 (3) ◽  
pp. 448-452 ◽  
Author(s):  
RAJAT KANTI NATH

AbstractThe commutativity degree of a finite group is the probability that two randomly chosen group elements commute. The object of this paper is to compute the commutativity degree of a class of finite groups obtained by semidirect product of two finite abelian groups. As a byproduct of our result, we provide an affirmative answer to an open question posed by Lescot.


1992 ◽  
Vol 02 (01) ◽  
pp. 103-116
Author(s):  
SAMUEL M. VOVSI

Let K be a commutative noetherian ring. It is proved that a representation of a finite group on a K-module of finite length or on a K-module of finite exponent has a finite basis for its identities. In particular, this implies an earlier result of Nguyen Hung Shon and the author stating that every representation of a finite group over a field is finitely based. The problem whether every representation of a finite group over a commutative noetherian ring is finitely based still remains open.


1988 ◽  
Vol 38 (2) ◽  
pp. 207-220 ◽  
Author(s):  
David Easdown ◽  
Cheryl E. Praeger

The minimal (faithful) degree μ(G) of a finite group G is the least positive integer n such that G ≲ Sn. Clearly if H ≤ G then μ(H) ≤ μ(G). However if N ◃ G then it is possible for μ(G/N) to be greater than μ(G); such groups G are here called exceptional. Properties of exceptional groups are investigated and several families of exceptional groups are given. For example it is shown that the smallest exceptional groups have order 32.


Sign in / Sign up

Export Citation Format

Share Document