scholarly journals Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside

2019 ◽  
Vol 168 (3) ◽  
pp. 613-633 ◽  
Author(s):  
MARK WILDON

AbstractA group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2-transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later, in 1921, he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this paper we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data.

2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


2005 ◽  
Vol 78 (3) ◽  
pp. 297-304 ◽  
Author(s):  
M. Asaad ◽  
M. Ezzat Mohamed

AbstractA subgroup H of a finite G is said to be c-normal in G if there exists a normal subgroup N of G such that G = HN with H ∩ N ≤ HG = CoreG(H). We are interested in studying the influence of the c–normality of certain subgroups of prime power order on the structure of finite groups.


1997 ◽  
Vol 40 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Manfred Hartl

AbstractDimension subgroups and Lie dimension subgroups are known to satisfy a ‘universal coefficient decomposition’, i.e. their value with respect to an arbitrary coefficient ring can be described in terms of their values with respect to the ‘universal’ coefficient rings given by the cyclic groups of infinite and prime power order. Here this fact is generalized to much more general types of induced subgroups, notably covering Fox subgroups and relative dimension subgroups with respect to group algebra filtrations induced by arbitrary N-series, as well as certain common generalisations of these which occur in the study of the former. This result relies on an extension of the principal universal coefficient decomposition theorem on polynomial ideals (due to Passi, Parmenter and Seghal), to all additive subgroups of group rings. This is possible by using homological instead of ring theoretical methods.


Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


1979 ◽  
Vol 22 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. D. Sands

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning the filling of Rn by congruent cubes. Hajós (4) reduced Minkowski's conjecture to a problem concerning the factorization of finite abelian groups and then solved this problem. In a similar manner Hajós (5) reduced Keller's conjecture to a problem in the factorization of finite abelian groups, but this problem remains unsolved, in general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution for cyclic groups of prime power order. In this paper we present a solution for cyclic groups whose order is the product of two prime powers.


2008 ◽  
Vol 15 (03) ◽  
pp. 479-484 ◽  
Author(s):  
M. Ramadan

Let G be a finite group. A subgroup K of a group G is called an [Formula: see text]-subgroup of G if NG(K) ∩ Kx ≤ K for all x ∈ G. The set of all [Formula: see text]-subgroups of G is denoted by [Formula: see text]. In this paper, we investigate the structure of a group G under the assumption that certain abelian subgroups of prime power order belong to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document