A symmetry-breaking phenomenon and asymptotic profiles of least-energy solutions to a nonlinear Schrödinger equation

Author(s):  
Kazuhiro Kurata ◽  
Tatsuya Watanabe ◽  
Masataka Shibata

In this paper, we study a symmetry-breaking phenomenon of a least-energy solution to a nonlinear Schrödinger equation under suitable assumptions on V(x), where λ > 1, p > 2 and χA is the characteristic function of the set A = [−(l + 2), −l] ∪ [l,l + 2] with l > 0. We also study asymptotic profiles of least-energy solutions for the singularly perturbed problem for small ε > 0.

1988 ◽  
Vol 109 (1-2) ◽  
pp. 109-126 ◽  
Author(s):  
Peter A. Clarkson

SynopsisIn this paper we apply the Painlevé tests to the damped, driven nonlinear Schrödinger equationwhere a(x, t) and b(x, t) are analytic functions of x and t, todetermine under what conditions the equation might be completely integrable. It is shown that (0.1) can pass the Painlevé tests only ifwhere α0(t),α1(t) and β(t) are arbitrary, real analytic functions of time. Furthermore, it is shown that in this special case, (0.1) may be transformed into the original nonlinear Schrödinger equation, which is known to be completely integrable.


2021 ◽  
Author(s):  
Bo WenBo ◽  
Chao-Qing Dai ◽  
Yue-Yue Wang ◽  
Peng-Fei Li

Abstract The symmetry breaking phenomenon of the parity-time (PT) symmetric solitons in self-defocusing saturable nonlinear Schrödinger equation is studied. As the soliton power increases, branches of asymmetric solitons are separated from antisymmetric solitons, and they coexist with both symmetric and antisymmetric solitons. The anti-symmetric solitons require different power thresholds when they are under different saturable nonlinear strength. The stronger the saturable nonlinearity is, the larger the power threshold is. The saturable nonlinear strength has obvious modulation effect on the symmetry breaking of antisymmetric solitons and the bifurcation of the power curve. However, when the modulation strength of PT- symmetric potential increases, the effect of this modulation effect weakens. The antisymmetric solitons are only stable in the low power region, and the stability of symmetric and asymmetric solitons is less affected by the soliton power. The increase of the saturable nonlinear strength leads to the increase of the critical power of the symmetry breaking. When a beam propagates in a PT-symmetric optical waveguide, the symmetry breaking of antisymmetric solitons can be controlled by changing the saturable nonlinear strength.


2000 ◽  
Vol 130 (5) ◽  
pp. 1029-1043 ◽  
Author(s):  
N. Hayashi ◽  
E. I. Kaikina ◽  
P. I. Naumkin

We study the Cauchy problem for the nonlinear Schrödinger equation with dissipation where L is a linear pseudodifferential operator with dissipative symbol ReL(ξ) ≥ C1|ξ|2/(1 + ξ2) and |L′(ξ)| ≤ C2(|ξ|+ |ξ|n) for all ξ ∈ R. Here, C1, C2 > 0, n ≥ 1. Moreover, we assume that L(ξ) = αξ2 + O(|ξ|2+γ) for all |ξ| < 1, where γ > 0, Re α > 0, Im α ≥ 0. When L(ξ) = αξ2, equation (A) is the nonlinear Schrödinger equation with dissipation ut − αuxx + i|u|2u = 0. Our purpose is to prove that solutions of (A) satisfy the time decay estimate under the conditions that u0 ∈ Hn,0 ∩ H0,1 have the mean value and the norm ‖u0‖Hn,0 + ‖u0‖H0,1 = ε is sufficiently small, where σ = 1 if Im α > 0 and σ = 2 if Im α = 0, and Therefore, equation (A) is considered as a critical case for the large-time asymptotic behaviour because the solutions of the Cauchy problem for the equation ut − αuxx + i|u|p−1u = 0, with p > 3 have the same time decay estimate ‖u‖L∞ = O(t−½) as that of solutions to the linear equation. On the other hand, note that solutions of the Cauchy problem (A) have an additional logarithmic time decay. Our strategy of the proof of the large-time asymptotics of solutions is to translate (A) to another nonlinear equation in which the mean value of the nonlinearity is zero for all time.


Sign in / Sign up

Export Citation Format

Share Document