Sur les sous-groupes planaires des groupes des dispersions des équations difiérentielles linéaires du deuxième ordre

Author(s):  
O. Borůvka

SynopsisA group consisting of real continuous functions of one real variable on the interval j = (−∞, ∞) is called planar if through each point of the plane j × j there passes just one element s ∈ .Every differential oscillatory equation (Q): y″ = Q(t)y (t ∈ j = (−∞, ∞), Q ∈ C(0)) admits functions, called the dispersions of (Q), that transform (Q) into itself. These dispersions are integrals of Kummer's equation (QQ): −{X, t} + Q(X)X′2(t) = Q(t) and form a three-parameter group , known as the dispersion group of (Q). The increasing dispersions of (Q) form a three-parameter group invariant in . The centre of the group is an infinite cyclic group , whose elements, the central dispersions of (Q), describe the position of conjugate points of (Q).The present paper contains new results concerning the algebraic structure of the group . It provides information on the following: (1) the existence and properties of planar subgroups of a given group and (2) the existence and properties of the groups containing a given planar group . The results obtained are: the planar subgroups of a given group form a system depending on two constants, SQ, such that for all ∈SQ. The equations (Q) whose groups contain the given planar group form a system dependent on one constant, QS, such that for all (Q)∈QS.

1960 ◽  
Vol 12 ◽  
pp. 674-685 ◽  
Author(s):  
H. Mirkil

All functions will be complex, periodic, integrable (on [0, 2π]) functions of a real variable x. Moreover, we shall require that every function have mean zero on [0, 2π], so that in particular non-zero constants are excluded.1. Plessner's characterization of absolutely continuous functions. An old theorem of Plessner (4), generalized to arbitrary compact groups by Bochner (1), can be taken as our starting point. Consider the functions f of bounded variation on [0, 2π]. These f form a Banach space F when each f is normed by its total variation on [0, 2π]. And translations define a natural one-parameter group of isometries on F.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.


1983 ◽  
Vol 26 (1) ◽  
pp. 89-96 ◽  
Author(s):  
James Howie

Let G be a group, and let r = r(t) be an element of the free product G * 〈G〉 of G with the infinite cyclic group generated by t. We say that the equation r(t) = 1 has a solution in G if the identity map on G extends to a homomorphism from G * 〈G〉 to G with r in its kernel. We say that r(t) = 1 has a solution over G if G can be embedded in a group H such that r(t) = 1 has a solution in H. This property is equivalent to the canonical map from G to 〈G, t|r〉 (the quotient of G * 〈G〉 by the normal closure of r) being injective.


Author(s):  
Trevor Evans

The techniques developed in (9) are used here to study the properties of multiplicative systems generated by one element (monogenie systems). The results are of two kinds. First, we obtain fairly complete information about the automorphisms and endo-morphisms of free and finitely related loops. The automorphism group of the free monogenie loop is the infinite cyclic group, each automorphism being obtained by mapping the generator on one of its repeated inverses. A monogenie loop with a finite, non-empty set of relations has only a finite number of endomorphisms. These are obtained by mapping the generator on some of the components, or their repeated inverses, occurring in the relations. We use the same methods to solve the isomorphism problem for monogenie loops, i.e. we give a method for determining whether two finitely related monogenie loops are isomorphic. The decision method consists essentially of constructing all homomorphisms between two given finitely related monogenie loops.


1914 ◽  
Vol 33 ◽  
pp. 139-142
Author(s):  
L. R. Ford

In this paper are introduced what we shall term “successive oscillation functions.” These functions are derived from functions of a real variable. The word “function” as here used has its widest meaning. We say y is a function of x in an interval of the the x-axis, if given any value of x, in the interval one or more values of y are thereby determined. The values of the function may be determined by any arbitrary law whatsoever. We shall deal with discontinuous functions; the theorems will be true for continuous functions, but will be trivial, except in the case of functions which are discontinuous and whose points of discontinuity are infinite in number. We shall assume in what follows that the values of the function lie between finite limits.


2020 ◽  
pp. 1-32
Author(s):  
W. Lück

We consider the problem whether for a group [Formula: see text] there exists a constant [Formula: see text] such that for any [Formula: see text]-matrix [Formula: see text] over the integral group ring [Formula: see text] the Fuglede–Kadison determinant of the [Formula: see text]-equivariant bounded operator [Formula: see text] given by right multiplication with [Formula: see text] is either one or greater or equal to [Formula: see text]. If [Formula: see text] is the infinite cyclic group and we consider only [Formula: see text], this is precisely Lehmer’s problem.


1971 ◽  
Vol 23 (1) ◽  
pp. 69-76 ◽  
Author(s):  
J. Zelmanowitz

The problem of classifying the torsion-free abelian groups with commutative endomorphism rings appears as Fuchs’ problems in [4, Problems 46 and 47]. They are far from solved, and the obstacles to a solution appear formidable (see [4; 5]). It is, however, easy to see that the only dualizable abelian group with a commutative endomorphism ring is the infinite cyclic group. (An R-module Miscalled dualizable if HomR(M, R) ≠ 0.) Motivated by this, we study the class of prime rings R which possess a dualizable module M with a commutative endomorphism ring. A characterization of such rings is obtained in § 6, which as would be expected, places stringent restrictions on the ring and the module.Throughout we will write homomorphisms of modules on the side opposite to the scalar action. Rings will not be assumed to contain identity elements unless otherwise indicated.


2019 ◽  
Vol 22 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Gerald Williams

Abstract The class of connected Labelled Oriented Graph (LOG) groups coincides with the class of fundamental groups of complements of closed, orientable 2-manifolds embedded in {S^{4}} , and so contains all knot groups. We investigate when Campbell and Robertson’s generalized Fibonacci groups {H(r,n,s)} are connected LOG groups. In doing so, we use the theory of circulant matrices to calculate the Betti numbers of their abelianizations. We give an almost complete classification of the groups {H(r,n,s)} that are connected LOG groups. All torus knot groups and the infinite cyclic group arise and we conjecture that these are the only possibilities. As a corollary we show that {H(r,n,s)} is a 2-generator knot group if and only if it is a torus knot group.


Sign in / Sign up

Export Citation Format

Share Document