choquard equation
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 94)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tianfang Wang ◽  
Wen Zhang

AbstractIn this paper we study the existence and multiplicity of solutions for the following nonlinear Choquard equation: $$\begin{aligned} -\Delta u+V(x)u=\bigl[ \vert x \vert ^{-\mu }\ast \vert u \vert ^{p}\bigr] \vert u \vert ^{p-2}u,\quad x \in \mathbb{R}^{N}, \end{aligned}$$ − Δ u + V ( x ) u = [ | x | − μ ∗ | u | p ] | u | p − 2 u , x ∈ R N , where $N\geq 3$ N ≥ 3 , $0<\mu <N$ 0 < μ < N , $\frac{2N-\mu }{N}\leq p<\frac{2N-\mu }{N-2}$ 2 N − μ N ≤ p < 2 N − μ N − 2 , ∗ represents the convolution between two functions. We assume that the potential function $V(x)$ V ( x ) satisfies general periodic condition. Moreover, by using variational tools from the Nehari manifold method developed by Szulkin and Weth, we obtain the existence results of ground state solutions and infinitely many pairs of geometrically distinct solutions for the above problem.


Sign in / Sign up

Export Citation Format

Share Document