Quantitative analysis of spatially resolved valence electron energy-loss spectra for electronic structure studies of grain boundaries and thin intergranular films

Author(s):  
Roger H. French

The spatial variation of the electronic structure at interfaces is critical to both interatomic bonding at atomically abrupt interfaces such as grain boundaries and also to the development of van der Waals (vdW) attraction forces at partially wetted interfaces. This interfacial electronic structure, as represented by the interband transition strength , can be determined by Kramers Kronig (KK) analysis of either vacuum ultraviolet (VUV) optical reflectance spectra or spatially resolved valence electron energy loss (SR-VEEL) spectra. Quantitative analysis of SR-VEELS requires accurate spectral line shapes coupled with single scattering deconvolution, convergence correction, and KK analysis. Both the energy loss functions (Fig. 1) and the interband transitions (Fig. 2) determined for α-Al2O3 using SR-VEELS compare well with the VUV results. In addition the use of the spectral line scan method, whereby typically 200 SR-VEEL spectra are acquired along a scan line of 20 nm, helps overcome many uncertainties in the data acquisition and analysis.

2000 ◽  
Vol 6 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Harald Müllejans ◽  
Roger H. French

AbstractValence electron energy-loss (VEEL) spectroscopy was performed on six ceramic materials in a dedicated scanning transmission electron microscope (STEM). Quantitative analysis of these data is described yielding access to the complex optical properties and the electronic structure of the materials. Comparisons are made on the basis of the interband transition strength describing transitions between occupied states in the valence band and empty states in the conduction band. This proves that the quantitative analysis of VEEL data is a competitive and complementary method to be considered when investigating the electronic structure of materials. Possibilities for improvement and extension of the analysis are discussed extensively.


2000 ◽  
Vol 6 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Harald Müllejans ◽  
Roger H. French

Abstract Valence electron energy-loss (VEEL) spectroscopy was performed on six ceramic materials in a dedicated scanning transmission electron microscope (STEM). Quantitative analysis of these data is described yielding access to the complex optical properties and the electronic structure of the materials. Comparisons are made on the basis of the interband transition strength describing transitions between occupied states in the valence band and empty states in the conduction band. This proves that the quantitative analysis of VEEL data is a competitive and complementary method to be considered when investigating the electronic structure of materials. Possibilities for improvement and extension of the analysis are discussed extensively.


1994 ◽  
Vol 332 ◽  
Author(s):  
Haral MÜllejans ◽  
J. Bruley ◽  
R. H. French ◽  
P. A. Morris

ABSTRACTValence electron energy-loss (EEL) spectroscopy in a dedicated scanning transmission electron microscope (STEM) has been used to study the Σ11 grain boundary in α-A12O3 in comparison with bulk α-A12O3. The interband transition strength was derived by Kramers-Kronig analysis and the electronic structure followed from quantitative critical point (CP) modelling. Thereby differences in the acquired spectra were related quantitatively to differences in the electronic structure at the grain boundary. The band gap at the boundary was slightly reduced and the ionicity increased. This work demonstrates for the first time that quantitative analysis of spatially resolved (SR) valence EEL spectra is possible. This represents a new avenue to electronic structure information from localized structures.


Sign in / Sign up

Export Citation Format

Share Document