electron energy loss
Recently Published Documents


TOTAL DOCUMENTS

5219
(FIVE YEARS 320)

H-INDEX

111
(FIVE YEARS 6)

Author(s):  
Olga Yuryevna Ridzel ◽  
Henryk Kalbe ◽  
Vytautas Astašauskas ◽  
Pavel Kuksa ◽  
Alessandra Bellissimo ◽  
...  

2D Materials ◽  
2022 ◽  
Author(s):  
Alexandre C. Foucher ◽  
Meikang Han ◽  
Christopher E. Shuck ◽  
Kathleen Maleski ◽  
Yury Gogotsi ◽  
...  

Abstract MXenes are an emergent class of two-dimensional materials with a very wide spectrum of promising applications. The synthesis of multiple MXenes, specifically solid-solution MXenes, allows fine tuning of their properties, expands their range of applications, and leads to enhanced performance. The functionality of solid-solution MXenes is closely related to the valence state of their constituents: transition metals, oxygen, carbon, and nitrogen. However, the impact of changes in the oxidation state of elements in MXenes is not well understood. In this work, three interrelated solid-solution MXene systems (Ti2-yNbyCTx, Nb2-yVyCTx, and Ti2-yVyCTx) were investigated with scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) to determine the localized valence states of metals at the nanoscale. The analysis demonstrates changes in the electronic configuration of V upon modification of the overall composition and within individual MXene flakes. These shifts of oxidation state can explain the nonlinear optical and electronic features of solid-solution MXenes. Vanadium appears to be particularly sensitive to modification of the valence state, while titanium maintains the same oxidation state in Ti-Nb and Ti-V MXenes, regardless of stoichiometry. The study also explains Nb's influential role in the previously observed electronic properties in the Nb-V and Nb-Ti systems.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Iksoo Park ◽  
Donghun Lee ◽  
Bo Jin ◽  
Jungsik Kim ◽  
Jeong-Soo Lee

Effects of carbon implantation (C-imp) on the contact characteristics of Ti/Ge contact were investigated. The C-imp into Ti/Ge system was developed to reduce severe Fermi-level pinning (FLP) and to improve the thermal stability of Ti/Ge contact. The current density (J)-voltage (V) characteristics showed that the rectifying behavior of Ti/Ge contact into an Ohmic-like behavior with C-imp. The lowering of Schottky barrier height (SBH) indicated that the C-imp could mitigate FLP. In addition, it allows a lower specific contact resistivity (ρc) at the rapid thermal annealing (RTA) temperatures in a range of 450–600 °C. A secondary ion mass spectrometry (SIMS) showed that C-imp facilitates the dopant segregation at the interface. In addition, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) mapping showed that after RTA at 600 °C, C-imp enhances the diffusion of Ge atoms into Ti layer at the interface of Ti/Ge. Thus, carbon implantation into Ge substrate can effectively reduce FLP and improve contact characteristics.


2022 ◽  
Author(s):  
Yuri Mikhlin ◽  
Roman Borisov ◽  
Sergey Vorobyev ◽  
Yevgeny Tomashevich ◽  
Alexander Romanchenko ◽  
...  

We introduce here a multifunctional material composed of alternating atomic sulfide sheets close to CuFeS2 and Mg-based hydroxide ones (valleriite), which are assembled due to their electric charges of opposite sign. Valleriite particles of 50-200 nm in the lateral size and 10-20 nm thick were synthesized via a simple hydrothermal pathway using various concentrations of precursors and dopants, and examined with XRD, TEM, EDS, X-ray photoelectron spectroscopy, reflection electron energy loss spectroscopy (REELS), Mössbauer, Raman and UV-vis-NIR spectroscopies, magnetic, dynamic light scattering, zeta potential measurements. The electronic, magnetic and optical characteristics are found to be critically dependent of the charge (electron density) at the narrow-gap sulfide layers containing Cu+ and Fe3+ cations, and can be tuned via the composition of hydroxide part. Particularly, substitution of Mg2+ with Al3+ increases the negative charge of the hydroxide layers and reduces the content of Fe3+-OH centers (10-45% of total iron); the effects of Cr and Co dopants entering both layers are more complicated. Mössbauer doublets of paramagnetic Fe3+ detected at room temperature transform to several Zeeman sextets at 4.2 K; the hyperfine fields up to 500 kOe and complex magnetic behavior, but not pure paramagnetism or antiferromagnetism, were observed for valleriites with the higher positive charge of the sulfide sheets, probably due to the depopulation of the minority-spin 3d states of S-bonded Fe3+ ions. Aqueous colloids of valleriite show optical absorption at 500 - 750 nm, which, along with the peaks at the same energies in REELS, may arise due to quasi-static dielectric resonance involving the vacant Fe 3d band and being dependent on the composition of both layers too. These and other findings call attention to the of valleriites as a new rich family of 2D materials for a variety of potential applications.


Sign in / Sign up

Export Citation Format

Share Document