silicon nitride
Recently Published Documents





2022 ◽  
Vol 11 (1) ◽  
pp. 1-6
Sabiha Anas Boussaa ◽  
Abdelhak Benkrid ◽  
Messaouda Ayachi ◽  
Naima Zaourar Boutarek ◽  
Mouhoub Birane

Awa Dieye ◽  
El Hadji Abdoulaye Niasse ◽  
Oumar Absatou Niasse ◽  
Alassane Diaw ◽  
Modou Pilor ◽  

In this work, the following materials have been chosen as anti-reflection layer, namely hafnium (HfO2), magnesium fluoride (MgF2), silicon oxynitrides (SiOxNy), silicon oxides (SiOx), silicon nitride (Si3N4) and hydrogenated silicon nitride (SiNx:H). The calculations were made on the basis of values of layer thicknesses and refractive indices that allow the phase and amplitude conditions to be respected and amplitude conditions. Numerical simulations have shown that low reflectivities at the surface of the surface of the plane cell coated with a simple layer, can be obtained. For example, for simple coatings materials based on Si3N4 and HfO2, we obtain a value of reflectivity around 3 and 2 % respectively. The structures with multilayer coatings such as MgF2/SiNx:H/Si, give a reflectivity of around 1 %. Thus, the refraction index of the coating is an important parameter that plays a major parameter that plays a major role in the optical properties of materials. The closer the refractive index is close to the index of the substrate or the layer above the substrate, the higher the reflectivity.

2022 ◽  
Stijn Cuyvers ◽  
Artur Hermans ◽  
Max Kiewiet ◽  
Jeroen Goyvaerts ◽  
Gunther Roelkens ◽  

2022 ◽  
Zexing Zhao ◽  
ziming zhang ◽  
jiatong li ◽  
zhenyuan shang ◽  
guoqing wang ◽  

2022 ◽  
Edgars Nitiss ◽  
Jianqi Hu ◽  
Anton Stroganov ◽  
Camille-Sophie Brès

AbstractQuasi-phase-matching has long been a widely used approach in nonlinear photonics, enabling efficient parametric frequency conversions such as second-harmonic generation. However, in silicon photonics the task remains challenging, as materials best suited for photonic integration lack second-order susceptibility (χ(2)), and means for achieving momentum conservation are limited. Here we present optically reconfigurable quasi-phase-matching in large-radius silicon nitride microresonators, resulting in up to 12.5-mW on-chip second-harmonic generated power and a conversion efficiency of 47.6% W−1. Most importantly, we show that such all-optical poling can occur unconstrained from intermodal phase-matching, leading to broadly tunable second-harmonic generation. We confirm the phenomenon by two-photon imaging of the inscribed χ(2) grating structures within the microresonators as well as by in situ tracking of both the pump and second-harmonic mode resonances during all-optical poling. These results unambiguously establish that the photogalvanic effect, responsible for all-optical poling, can overcome phase mismatch constraints, even in resonant systems.

Silicon ◽  
2022 ◽  
Afaf Brik ◽  
Bedra Benyahia ◽  
Brahim Mahmoudi ◽  
Amar Manseri ◽  
Faïza Tiour ◽  

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Fan Yang ◽  
Hong Fang ◽  
Huangpu Han ◽  
Bingxi Xiang

In this research, a vertical silicon nitride strip-loaded grating coupler on lithium niobate thin film was proposed, designed, and simulated. In order to improve the coupling efficiency and bandwidth, the parameters such as the SiO2 cladding layer thickness, grating period, duty cycle, fiber position, and fiber angle were optimized and analyzed. The alignment tolerances of the grating coupler parameters were also calculated. The maximum coupling efficiency and the −3 dB bandwidth were optimized to 33.5% and 113 nm, respectively. In addition, the grating coupler exhibited a high alignment tolerance.

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 27
Pedro Chamorro-Posada

A study of label-free silicon nitride asymmetric double-microring resonators is presented. The use of highly accurate 3D vector modal techniques permits an extensive exploration of the parameter space defining the architecture of the proposed device in the search for optimal geometries and reaching configurations not addressed in previous studies that had been limited to symmetrical configurations. Asymmetry, on the other hand, permits to access resonances that exploit the radiation-quenching properties of the structure in an optimal way. The analysis presented also includes the effect of absorption in the sensor aqueous cladding that is generally omitted. The results of the numerical survey indicate that the optimized geometries bring about a substantive performance improvement at small microring radii that are impractical for more conventional single-ring geometries due to the high radiation losses. Therefore, lower footprint devices, and a larger scale of integration, can be attained with the proposed structure.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 315
Kazuya Saigusa ◽  
Joji Yamamoto ◽  
Koji Takahashi ◽  
Fumiaki Kumeno ◽  
Norihito Shibuya

This study aimed to improve the bending strength and reliability of ceramics using laser peening (LP). In the experiment, LP without coating (LPwC) and with coating (LPC) were applied to silicon nitride (Si3N4) under various conditions. The surface roughness, residual stress, and bending strength were then measured for the non-LP, LPwC, and LPC specimens. The results show that the LPwC specimen had a greater surface roughness but introduced larger and deeper compressive residual stress when compared with the non-LP and LPC specimens. In addition, the bending strength of the LPwC specimen was higher and scatter in bending strength was less compared with the non-LP and LPC specimens. This may be attributed to the transition of the fracture initiation point from the surface to the interior of the LPwC specimen because of the compressive residual stress introduced near the surface. Thus, it was demonstrated that the application of LP is effective in improving the strength and reliability of ceramics.

Mirna Chaker Bechelany ◽  
Vanessa Proust ◽  
Abhijeet Lale ◽  
Maxime Balestrat ◽  
Arnaud Brioude ◽  

Sign in / Sign up

Export Citation Format

Share Document