grain boundaries
Recently Published Documents





2022 ◽  
Vol 106 ◽  
pp. 41-48
S.-H. Joo ◽  
Y.B. Jeong ◽  
T. Wada ◽  
I.V. Okulov ◽  
H. Kato

2022 ◽  
Vol 203 ◽  
pp. 111044
N. Kvashin ◽  
N. Anento ◽  
D. Terentyev ◽  
A. Serra

2022 ◽  
Thomas Defferriere ◽  
Dino Klotz ◽  
Juan Carlos Gonzalez-Rosillo ◽  
Jennifer L. M. Rupp ◽  
Harry L. Tuller

S. E. Savotchenko

New phenomenological models of recrystallization of a polycrystalline material in two regimes are proposed taking into account the finite width of grain boundaries. The solutions are obtained in an analytical form for the initial-boundary value problems formulated. They describe the distributions of the concentration of impurities diffusing from the surface coating, both in the grain boundary and in the grain itself in the recrystallized region. The speed of the recrystallization front movement is indicated, which agrees with the types of the corresponding kinetic dependences observed in experiments.

2022 ◽  
Vol 13 (1) ◽  
Mei Wu ◽  
Xiaowei Zhang ◽  
Xiaomei Li ◽  
Ke Qu ◽  
Yuanwei Sun ◽  

AbstractFlexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the electrical polarization response to mechanical strain gradients that is not restricted by the symmetry of materials. However, large elastic deformation is usually difficult to achieve in most solids, and the strain gradient at minuscule is challenging to control. Here, we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~1.2 nm−1) within 3–4-unit cells, and thus obtain atomic-scale flexoelectric polarization of up to ~38 μC cm−2 at a 24° LaAlO3 grain boundary. Accompanied by the generation of the nanoscale flexoelectricity, the electronic structures of grain boundaries also become different. Hence, the flexoelectric effect at grain boundaries is essential to understand the electrical activities of oxide ceramics. We further demonstrate that for different materials, altering the misorientation angles of grain boundaries enables tunable strain gradients at the atomic scale. The engineering of grain boundaries thus provides a general and feasible pathway to achieve tunable flexoelectricity.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 504
Jiří Svoboda ◽  
Petr Bořil ◽  
Jakub Holzer ◽  
Natália Luptáková ◽  
Milan Jarý ◽  

Oxide-dispersion-strengthened (ODS) Fe-Al-Y2O3-based alloys (denoted as FeAlOY) containing 5 vol. % of nano-oxides have a potential to become top oxidation and creep-resistant alloys for applications at temperatures of 1100–1300 °C. Oxide dispersoids cause nearly perfect strengthening of grains; thus, grain boundaries with limited cohesive strength become the weak link in FeAlOY in this temperature range. One of the possibilities for significantly improving the strength of FeAlOY is alloying with appropriate elements and increasing the cohesive strength of grain boundaries. Nearly 20 metallic elements have been tested with the aim to increase cohesive strength in the frame of preliminary tests. A positive influence is revealed for Al, Cr, and Y, whereby the influence of Y is enormous (addition of 1% of metallic Y increases strength by a factor of 2), as it is presented in this paper.

2022 ◽  
Xiaopu Zhang ◽  
Mengyuan Wang ◽  
Hailong Wang ◽  
Moneesh Upmanyu ◽  
John Boland

Abstract Scanning tunneling microscopy and numerical calculations are used to study the structure and relaxation of grain boundaries at the surface of planar nanocrystalline copper (111) films and bicrystals. We show that the strong energetic preference for boundary cores to lie along close-packed planes introduces a restructuring that rotates adjoining grains and generates elastic stresses in the triple junction region. The interplay of this stress field and the core stabilization determines the length scale of the restructuring and controls the shape and magnitude of the displacement field around the triple junction. Depending on the in-plane angle, restructured boundaries can extend to depths of ~ 15 nm with the associated elastic stress fields extending to even greater depths. These results point to a new mechanism of boundary relaxation at surfaces that is expected to play an important role in grain coalescence and stress evolution in growing films.

Sign in / Sign up

Export Citation Format

Share Document