Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat

1990 ◽  
Vol 5 (1) ◽  
pp. 83-98 ◽  
Author(s):  
M.E. McCourt ◽  
J. Thalluri ◽  
G.H. Henry

AbstractIn a series of physiological experiments, a total of 203 neurons at the Area 17/18 border were recorded with a callosal link either demonstrated by antidromic or transsynaptic activation from stimulating electrodes located in the homotopic contralateral hemisphere (CH), or in the splenial segment of the corpus callosum (CC). Forty-four percent of the transcallosal cells could also be driven from stimulating electrodes in or just above the lateral geniculate nucleus (OR1). The majority (69%) of transcallosal neurons were classifiable as belonging to the complex family (B and C cells) and most of these were found in the supragranular laminae and in lamina 4A. The ocular dominance distribution of transcallosal cells was trimodal, consisting of roughly equal numbers of monocularly dominated and binocularly balanced neurons. Estimates of conduction time and synaptic delay were obtained for neurons driven from CH, CC, and from OR1, and in most instances the response latency was short enough to suggest a monosynaptic input from either the ipsi- or contra-lateral hemisphere. The distribution of transcallosal conduction times showed that S cells, as a class, had significantly faster conduction than cells of the complex family but otherwise there was no obvious signs of multimodality in the distribution curve. An analysis of the synaptic delays in transcallosal activation produced a mean of 0.6 to 0.7 ms but some were too short to be consistent with a transsynaptic drive, suggesting that some cells with an antidromic drive may have been included in the transsynaptic category. Results are interpreted in terms of the contribution made by the corpus callosum to stereoscopic vision.

1983 ◽  
Vol 142 (5) ◽  
pp. 471-476 ◽  
Author(s):  
Charles Shagass ◽  
Richard C. Josiassen ◽  
Richard A. Roemer ◽  
John J. Straumanis ◽  
Stephen M. Slepner

SummarySomatosensory potentials (SEPs) evoked by vibrotactile finger stimulation have been reported to be the same in both hemispheres in schizophrenics, whereas they are asymmetrical in normals, with the contralateral hemisphere leading the ipsilateral (Jones and Miller, 1981). These findings were taken to indicate that the corpus callosum is nonfunctional in schizophrenics. To attempt replication of these results, vibrotactile SEPs of 6 schizophrenics and 6 normal controls were recorded with both bipolar and monopolar derivations. Assymetrical bipolar SEPs were obtained in both schizophrenics and controls; previous observations of schizophrenic-control differences were not replicated. Acceptable evidence of ipsilateral early SEPs was not obtained; the test procedure seems inappropriate for measuring callosal conduction time.


1991 ◽  
Vol 7 (3) ◽  
pp. 201-219 ◽  
Author(s):  
B. R. Payne

AbstractThe representation of the visual field in the part of area 17 containing neurons that project axons across the corpus callosum to the contralateral hemisphere was defined in the cat. Of 1424 sites sampled along 77 electrode tracks, 768 proved to be in the callosal sending zone, which was identified by retrograde transport of horseradish peroxidase that had been deposited in the opposite hemisphere. The results show that the callosal sending zone has a fairly constant width of between 3 and 4 mm at most levels in area 17. However, the representation of the contralateral field at the different elevations of the visual field is not equal in this zone. The zone represents positions within 4 deg of the midline at the 0-deg horizontal meridian, and positions out to 15-deg azimuths in the upper hemifield and out to positions of 25-deg azimuth in the lower hemifield. The shape of the representation is approximately mirror-symmetric about the horizontal meridian, although there is a greater extent in the lower hemifield, which can be accounted for by the greater range of elevations (>60 deg) represented there compared with the upper hemifield (-40 deg). The representation in the sending zone of one hemisphere matches that present in the area 17/18 transition zone, which receives the bulk of transcallosal projections, in the opposite hemisphere. The observations on the sending zone show that callosal connections of area 17 are concerned with a vertical hour-glass-shaped region of the visual field centered on the midline. The observations suggest that in addition to interactions between neurons concerned with positions immediately adjacent to the midline, there are positions, especially high and low in the visual field, where interactions can occur between neurons that have receptive fields displaced some distance from the midline.


2002 ◽  
Vol 19 (1) ◽  
pp. 39-49 ◽  
Author(s):  
RALF ENGELMANN ◽  
JOHN M. CROOK ◽  
SIEGRID LÖWEL

Strabismus (or squint) is both a well-established model for developmental plasticity of the brain and a frequent clinical symptom. While the layout and topographic relationship of functional domains in area 17 of divergently squinting cats has been analyzed extensively in recent years (e.g. Löwel et al., 1998), functional maps in convergently squinting animals have so far not been visualized with comparable detail. We have therefore investigated the functional organization of area 17 in adult cats with a surgically induced convergent squint angle. In these animals, visual acuity was determined by both behavioral tests and recordings of visual evoked potentials, and animals with comparable acuities in both eyes were selected for further experiments. The functional layout of area 17 was visualized using optical imaging of intrinsic signals. Monocular iso-orientation domains had a patchy appearance and their layout was different for left and right eye stimulation, so that segregated ocular dominance domains could be visualized. Iso-orientation domains exhibited a pinwheel-like organization, as previously described for normal and divergently squinting cats. Mean pinwheel density was the same in the experimental and control animals (3.4 pinwheel centers per mm2 cortical surface), but significantly (P < 0.00001) higher than that reported previously for normal and divergently squinting cats (2.7/mm2). A comparison of orientation with ocular dominance maps revealed that iso-orientation domains were continuous across the borders of ocular dominance domains and tended to intersect these borders at steep angles. However, in contrast to previous reports in normally raised cats, orientation pinwheel centers showed no consistent topographical relationship to the peaks of ocular dominance domains. Taken together, these observations indicate an overall similarity between the functional layout of orientation and ocular dominance maps in area 17 of convergently and divergently squinting cats. The higher pinwheel densities compared with previous reports suggest that animals from different gene pools might generally differ in this parameter and therefore also in the space constants of their cortical orientation maps.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


2002 ◽  
Vol 88 (2) ◽  
pp. 1051-1058 ◽  
Author(s):  
M. Tettamanti ◽  
E. Paulesu ◽  
P. Scifo ◽  
A. Maravita ◽  
F. Fazio ◽  
...  

Normal human subjects underwent functional magnetic resonance imaging (fMRI) while performing a simple visual manual reaction-time (RT) task with lateralized brief stimuli, the so-called Poffenberger's paradigm. This paradigm was employed to measure interhemispheric transmission (IT) time by subtracting mean RT for the uncrossed hemifield-hand conditions, that is, those conditions not requiring an IT, from the crossed hemifield-hand conditions, that is, those conditions requiring an IT to relay visual information from the hemisphere of entry to the hemisphere subserving the response. The obtained difference is widely believed to reflect callosal conduction time, but so far there is no direct physiological evidence in humans. The aim of our experiment was twofold: first, to test the hypothesis that IT of visuomotor information requires the corpus callosum and to identify the cortical areas specifically activated during IT. Second, we sought to discover whether IT occurs mainly at premotor or perceptual stages of information processing. We found significant activations in a number of frontal, parietal, and temporal cortical areas and in the genu of the corpus callosum. These activations were present only in the crossed conditions and therefore were specifically related to IT. No selective activation was present in the uncrossed conditions. The location of the activated callosal and cortical areas suggests that IT occurs mainly, but not exclusively, at premotor level. These results provide clear cut evidence in favor of the hypothesis that the crossed-uncrossed difference in the Poffenberger paradigm depends on IT rather than on a differential hemispheric activation.


Nature ◽  
1966 ◽  
Vol 211 (5051) ◽  
pp. 889-890 ◽  
Author(s):  
BEATRIZ WILLIAMS ◽  
DOROTHY E. WOOLLEY ◽  
PAOLA S. TIMIRAS

1998 ◽  
Vol 10 (8) ◽  
pp. 2629-2643 ◽  
Author(s):  
Siegrid Löwel ◽  
Kerstin E. Schmidt ◽  
Dae-Shik Kim ◽  
Fred Wolf ◽  
Frank Hoffsümmer ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document