human subjects
Recently Published Documents





2022 ◽  
Vol 31 (2) ◽  
pp. 1-30
Fahimeh Ebrahimi ◽  
Miroslav Tushev ◽  
Anas Mahmoud

Modern application stores enable developers to classify their apps by choosing from a set of generic categories, or genres, such as health, games, and music. These categories are typically static—new categories do not necessarily emerge over time to reflect innovations in the mobile software landscape. With thousands of apps classified under each category, locating apps that match a specific consumer interest can be a challenging task. To overcome this challenge, in this article, we propose an automated approach for classifying mobile apps into more focused categories of functionally related application domains. Our aim is to enhance apps visibility and discoverability. Specifically, we employ word embeddings to generate numeric semantic representations of app descriptions. These representations are then classified to generate more cohesive categories of apps. Our empirical investigation is conducted using a dataset of 600 apps, sampled from the Education, Health&Fitness, and Medical categories of the Apple App Store. The results show that our classification algorithms achieve their best performance when app descriptions are vectorized using GloVe, a count-based model of word embeddings. Our findings are further validated using a dataset of Sharing Economy apps and the results are evaluated by 12 human subjects. The results show that GloVe combined with Support Vector Machines can produce app classifications that are aligned to a large extent with human-generated classifications.

2022 ◽  
Vol 12 ◽  
Ming Lei ◽  
Meng-Qing Tao ◽  
Yi-Jin Wu ◽  
Liang Xu ◽  
Zhe Yang ◽  

Metabolic intervention is a novel anti-rheumatic approach. The glycolytic regulator NAMPT has been identified as a therapeutic target of rheumatoid arthritis (RA), while other metabolic regulators coordinating NAMPT to perpetuate inflammation are yet to be investigated. We continuously monitored and validated expression changes of Nampt and inflammatory indicators in peripheral while blood cells from rats with collagen-induced arthritis (CIA). Gene transcriptional profiles of Nampt+ and Nampt++ samples from identical CIA rats were compared by RNA-sequencing. Observed gene expression changes were validated in another batch of CIA rats, and typical metabolic regulators with persistent changes during inflammatory courses were further investigated in human subjects. According to expression differences of identified genes, RA patients were assigned into different subsets. Clinical manifestation and cytokine profiles among them were compared afterwards. Nampt overexpression typically occurred in CIA rats during early stages, when iNos and Il-1β started to be up-regulated. Among differentially expressed genes between Nampt+ and Nampt++ CIA rat samples, changes of Tpi1, the only glycolytic enzyme identified were sustained in the aftermath of acute inflammation. Similar to NAMPT, TPI1 expression in RA patients was higher than general population, which was synchronized with increase in RFn as well as inflammatory monocytes-related cytokines like Eotaxin. Meanwhile, RANTES levels were relatively low when NAMPT and TPI1 were overexpressed. Reciprocal interactions between TPI1 and HIF-1α were observed. HIF-1α promoted TPI1 expression, while TPI1 co-localized with HIF-1α in nucleus of inflammatory monocytes. In short, although NAMPT and TPI1 dominate different stages of CIA, they similarly provoke monocyte-mediated inflammation.

2022 ◽  
Vol 2 (1) ◽  
pp. 73-101
Laura M. Nyhan ◽  
Kieran M. Lynch ◽  
Aylin W. Sahin ◽  
Elke K. Arendt

Kombucha is a carbonated, slightly acidic beverage traditionally produced by the fermentation of sweetened tea by a symbiotic culture of bacteria and yeast (SCOBY). The microbial community of kombucha is a complex one, whose dynamics are still not fully understood; however, the emergence of culture-independent techniques has allowed a more comprehensive insight into kombucha microbiota. In recent times, advancements have been made towards the optimisation of the fermentation process, including the use of alternative substrates, defined starter cultures and the modification of fermentation parameters, with the aim of producing an innovative beverage that is improved in terms of its physiochemical, sensory and bioactive properties. The global kombucha market is rapidly increasing, with the rising popularity of the tea attributed in part to its purported health benefits, despite the lack of research in human subjects to substantiate such claims. Accordingly, the incidence of kombucha home-brewing has increased, meaning there is a requirement for individuals to recognise the potential hazards associated with fermentation and the relevant preventative measures to be undertaken to ensure the safe preparation of kombucha. The aim of this review is to provide an update regarding the current knowledge of kombucha production, microbiology, safety and marketing.

2022 ◽  
Vol 7 (1) ◽  
Amy E. Anderson ◽  
Iwen Wu ◽  
Alexis J. Parrillo ◽  
Matthew T. Wolf ◽  
David R. Maestas ◽  

AbstractSoft tissue reconstruction remains an intractable clinical challenge as current surgical options and synthetic implants may produce inadequate outcomes. Soft tissue deficits may be surgically reconstructed using autologous adipose tissue, but these procedures can lead to donor site morbidity, require multiple procedures, and have highly variable outcomes. To address this clinical need, we developed an “off-the-shelf” adipose extracellular matrix (ECM) biomaterial from allograft human tissue (Acellular Adipose Tissue, AAT). We applied physical and chemical processing methods to remove lipids and create an injectable matrix that mimicked the properties of lipoaspirate. Biological activity was assessed using cell migration and adipogenesis assays. Characterization of regenerative immune properties in a murine muscle injury model revealed that allograft and xenograft AAT induced pro-regenerative CD4+ T cells and macrophages with xenograft AAT additionally attracting eosinophils secreting interleukin 4 (Il4). In immunocompromised mice, AAT injections retained similar volumes as human fat grafts but lacked cysts and calcifications seen in the fat grafts. The combination of AAT with human adipose-derived stem cells (ASCs) resulted in lower implant volumes. However, tissue remodeling and adipogenesis increased significantly in combination with ASCs. Larger injected volumes of porcine-derived AAT demonstrated biocompatibility and greater retention when applied allogeneicly in Yorkshire cross pigs. AAT was implanted in healthy volunteers in abdominal tissue that was later removed by elective procedures. AAT implants were well tolerated in all human subjects. Implants removed between 1 and 18 weeks demonstrated increasing cellular infiltration and immune populations, suggesting continued tissue remodeling and the potential for long-term tissue replacement.

2022 ◽  
Gabriela Garcia ◽  
Tharanga Kariyawasam ◽  
Anton Lord ◽  
Cristiano Costa ◽  
Lana Chaves ◽  

Abstract We describe the first application of the Near-infrared spectroscopy (NIRS) technique to detect Plasmodium falciparum and P. vivax malaria parasites through the skin of malaria positive and negative human subjects. NIRS is a rapid, non-invasive and reagent free technique which involves rapid interaction of a beam of light with a biological sample to produce diagnostic signatures in seconds. We used a handheld, miniaturized spectrometer to shine NIRS light on the ear, arm and finger of P. falciparum (n=7) and P. vivax (n=20) positive people and malaria negative individuals (n=33) in a malaria endemic setting in Brazil. Supervised machine learning algorithms for predicting the presence of malaria were applied to predict malaria infection status in independent individuals (n=12). Separate machine learning algorithms for differentiating P. falciparum from P. vivax infected subjects were developed using spectra from the arm and ear of P. falciparum and P. vivax (n=108) and the resultant model predicted infection in spectra of their fingers (n=54).NIRS non-invasively detected malaria positive and negative individuals that were excluded from the model with 100% sensitivity, 83% specificity and 92% accuracy (n=12) with spectra collected from the arm. Moreover, NIRS also correctly differentiated P. vivax from P. falciparum positive individuals with a predictive accuracy of 93% (n=54). These findings are promising but further work on a larger scale is needed to address several gaps in knowledge and establish the full capacity of NIRS as a non-invasive diagnostic tool for malaria. It is recommended that the tool is further evaluated in multiple epidemiological and demographic settings where other factors such as age, mixed infection and skin colour can be incorporated into predictive algorithms to produce more robust models for universal diagnosis of malaria.

2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-13
Jessica Pater ◽  
Casey Fiesler ◽  
Michael Zimmer

Many research communities routinely conduct activities that fall outside the bounds of traditional human subjects research, yet still frequently rely on the determinations of institutional review boards (IRBs) or similar regulatory bodies to scope ethical decision-making. Presented as a U.S. university-based fictional memo describing a post-hoc IRB review of a research study about social media and public health, this design fiction draws inspiration from current debates and uncertainties in the HCI and social computing communities around issues such as the use of public data, privacy, open science, and unintended consequences, in order to highlight the limitations of regulatory bodies as arbiters of ethics and the importance of forward-thinking ethical considerations from researchers and research communities.

2022 ◽  
Vol 8 ◽  
Hideki Maeda

In Japan, a law called the Clinical Trials Act went into being effective on April 1, 2018, and clinical research on human subjects conducted in Japan has been undergone major changes. Those other than clinical trials for marketing approval of drugs or medical devices are broadly classified into “specific clinical trials” and others, and regulations have been tightened for each. As a result, clinical interventional study was drastically reduced, and observational clinical study increased. For the observational clinical study, the two previous ethical guidelines were merged into the “Ethical Guidelines for Medical and Biological Research Involving Human Subjects,” which was enacted in March 2021. The observational clinical study is now subjected to these ethical guidelines. In addition, changes are planned for the Act on the Protection of Personal Information, which greatly affects data collection in clinical research. Clinical research in Japan must be conducted appropriately while adapting to these various changes in the external environment and legal framework. Adapting to these changes is not an easy task, as it requires increased financial and human resources for all stakeholders.

Katie H Long ◽  
Kristine R McLellan ◽  
Maria Boyarinova ◽  
Sliman J Bensmaia

Hand proprioception - the sense of the posture and movements of the wrist and digits - is critical to dexterous manual behavior and to stereognosis, the ability to sense the three-dimensional structure of objects held in the hand. To better understand this sensory modality and its role in hand function, we sought to characterize the acuity with which the postures and movements of finger joints are sensed. To this end, we measured the ability of human subjects to discriminate changes in posture and speed around the three joints of the index finger. In these experiments, we isolated the sensory component by imposing the postures on an otherwise still hand, to complement other studies, in which subjects made judgments on actively achieved postures. We found that subjects could reliably sense 12-16% changes in joint angle and 18-32% changes in joint speed. Furthermore, the acuity for posture and speed was comparable across the three joints of the finger. Finally, task performance was unaffected by the presence of a vibratory stimulus, calling into question the role of cutaneous cues in hand proprioception.

First Monday ◽  
2022 ◽  
Joseph Reagle ◽  
Manas Gaur

Ethical researchers who want to quote public user-generated content without further exposing these sources have little guidance as to how to disguise quotes. Reagle (2021b) showed that researchers’ attempts to disguise phrases on Reddit are often haphazard and ineffective. Are there tools that can help? Automated word spinners, used to generate reams of ad-laden content, seem suited to the task. We select 10 quotations from fictional posts on r/AmItheButtface and “spin” them using Spin Rewriter and WordAi. We review the usability of the services and then (1) search for their spins on Google; and, (2) ask human subjects (N=19) to judge them for fidelity. Participants also disguise three of those phrases and these are assessed for efficacy and the tactics employed. We recommend that researchers disguise their prose by substituting novel words (i.e., swapping infrequently occurring words, such as “toxic” with “radioactive”) and rearranging elements of sentence structure. The practice of testing spins, however, remains essential even when using good tactics; a Python script is provided to facilitate such testing.

eLife ◽  
2022 ◽  
Vol 11 ◽  
Osman Darici ◽  
Arthur D Kuo

The simple task of walking up a sidewalk curb is actually a dynamic prediction task. The curb is a disturbance that could cause a loss of momentum if not anticipated and compensated for. It might be possible to adjust momentum sufficiently to ensure undisturbed time of arrival, but there are infinite possible ways to do so. Much of steady, level gait is determined by energy economy, which should be at least as important with terrain disturbances. It is, however, unknown whether economy also governs walking up a curb, and whether anticipation helps. Here we show that humans compensate with an anticipatory pattern of forward speed adjustments, predicted by a criterion of minimizing mechanical energy input. The strategy is mechanistically predicted by optimal control for a simple model of bipedal walking dynamics, with each leg's push-off work as input. Optimization predicts a tri-phasic trajectory of speed (and thus momentum) adjustments, including an anticipatory phase. In experiment, human subjects ascend an artificial curb with the predicted tri-phasic trajectory, which approximately conserves overall walking speed relative to undisturbed flat ground. The trajectory involves speeding up in a few steps before the curb, losing considerable momentum from ascending it, and then regaining speed in a few steps thereafter. Descending the curb entails a nearly opposite, but still anticipatory, speed fluctuation trajectory, in agreement with model predictions that speed fluctuation amplitudes should scale linearly with curb height. The fluctuation amplitudes also decrease slightly with faster average speeds, also as predicted by model. Humans can reason about the dynamics of walking to plan anticipatory and economical control, even with a sidewalk curb in the way.

Sign in / Sign up

Export Citation Format

Share Document