Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina

1991 ◽  
Vol 7 (5) ◽  
pp. 451-458 ◽  
Author(s):  
Osamu Umino ◽  
Yunhee Lee ◽  
John E. Dowling

AbstractInterplexiform cells are centrifugal neurons in the retina carrying information from the inner to the outer plexiform layers. In teleost fish, interplexiform cells appear to release dopamine in the outer plexiform layer after prolonged darkness that modulates the receptive-field size and light responsiveness of horizontal cells (Mangel & Dowling, 1985; Yang et al., 1988a, b). It has been proposed that interplexiform cells may also release dopamine upon steady illumination because horizontal cells' receptive fields shrink in the light (Shigematsu & Yamada, 1988). Here, we report the shrinkage of the receptive fields of horizontal cells seen in the presence of background illumination is not blocked by dopamine antagonists, indicating that dopamine does not underlie the receptive-field size changes observed during steady illumination. Flickering light, however, does appear to stimulate the release of dopamine from the interplexiform cells, resulting in a marked reduction of horizontal cell receptive-field size. Taken together, experiments on horizontal cells indicate that dopamine is released from interplexiform cells in the teleost retina after prolonged darkness and during flickering light, but that dopamine release from interplexiform cells during steady retinal illumination is minimal.

2011 ◽  
Vol 28 (2) ◽  
pp. 137-144 ◽  
Author(s):  
BRYAN A. DANIELS ◽  
WILLIAM H. BALDRIDGE

AbstractHorizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size.


1995 ◽  
Vol 12 (5) ◽  
pp. 985-999 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin ◽  
Seth E. Persky

AbstractThe large receptive fields of retinal horizontal cells are thought to reflect extensive electrical coupling via gap junctions. It was shown recently that the biotinylated tracers, biocytin and Neurobiotin, provide remarkable images of coupling between many types of retinal neuron, including horizontal cells. Further, these demonstrations of tracer coupling between horizontal cells rivaled the size of their receptive fields, suggesting that the pattern of tracer coupling may provide some index of the extent of electrical coupling. We studied this question by comparing the receptive field and tracer coupling size of dark-adapted horizontal cells recorded in the superfused, isolated retina-eyecup of the rabbit. Both the edge-to-edge receptive field and space constants (λ) were computed for each cell using a long, narrow slit of light displaced across the retinal surface. Cells were subsequently labeled by iontophoretic injection of Neurobiotin. The axonless A-type horizontal cells showed extensive, homologous tracer coupling in groups greater than 1000 covering distances averaging about 2 mm. The axon-bearing B-type horizontal cells were less extensively tracer coupled, showing homologous coupling of the somatic endings in groups of about 100 cells spanning approximately 400 μm and a separate homologous coupling of the axon terminal endings covering only about 275 μm. Moreover, we observed a remarkable, linear relationship between the size of the receptive fields of each of the three horizontal cell endings and the magnitude of their tracer coupling. Our findings suggest that the extent of tracer coupling provides a strong, linear index of the magnitude of electrical current flow, as derived from receptive-field measures, across groups of coupled horizontal cells. These data thus provide the first direct evidence that the receptive-field size of horizontal cells is related to the extent of their coupling via gap junctions.


2005 ◽  
Vol 22 (1) ◽  
pp. 65-78 ◽  
Author(s):  
TOSHIHIRO AOYAMA ◽  
YOSHIMI KAMIYAMA ◽  
SHIRO USUI

The size of the receptive field of retinal horizontal cells changes with the state of dark/light adaptation. We have used a mathematical model to determine how changes in the membrane conductance affect the receptive-field properties of horizontal cells. We first modeled the nonlinear membrane properties of horizontal cells based on ionic current mechanisms. The dissociated horizontal cell model reproduced the voltage–current (V–I) relationships for various extracellular glutamate concentrations measured in electrophysiological studies. Second, a network horizontal cell model was also described, and it reproduced theV–Irelationship observedin vivo. The network model showed a bell-shaped relationship between the receptive-field size and constant glutamate concentration. The simulated results suggest that the calcium current is a candidate for the bell-shaped length constant relationship.


2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


2008 ◽  
Vol 25 (4) ◽  
pp. 419-427 ◽  
Author(s):  
Kazunori Yamamoto ◽  
Hiroshi Jouhou ◽  
Masanori Iwasaki ◽  
Akimichi Kaneko ◽  
Masahiro Yamada

2006 ◽  
Vol 46 (4) ◽  
pp. 467-474 ◽  
Author(s):  
Herbert A. Reitsamer ◽  
Renate Pflug ◽  
Melchior Franz ◽  
Sonja Huber

2002 ◽  
Vol 147 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Tetsuo Furukawa ◽  
Renata Petruv ◽  
Syozo Yasui ◽  
Masahiro Yamada ◽  
Mustafa Djamgoz

1991 ◽  
Vol 7 (5) ◽  
pp. 441-450 ◽  
Author(s):  
William H. Baldridge ◽  
Alexander K. Ball

AbstractThe effect of background illumination on horizontal cell receptive-field size and dye coupling was investigated in isolated superfused goldfish retinas. Background illumination reduced both horizontal cell receptive-field size and dye coupling. The effect of light on horizontal cell receptive-field size was mimicked by treating the retina with 20 μM dopamine. To test the hypothesis that the effects of light were due to endogenous dopamine release, the effect of light was studied in goldfish retinas in which dopaminergic interplexiform cells were lesioned using 6-hydroxydopamine treatment. In lesioned retinas, background illumination reduced both horizontal cell receptive-field size and dye coupling. Furthermore, the effect of background illumination on unlesioned animals could not be blocked by prior treatment with the D1 dopamine receptor antagonist SCH-23390. These results suggest that, in goldfish retina, dopamine release is not the only mechanism by which horizontal cell receptive-field size could be reduced by light.


Sign in / Sign up

Export Citation Format

Share Document