endogenous dopamine
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 24)

H-INDEX

52
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Clément Vitrac ◽  
Lauriane Nallet-Khosrofian ◽  
Maiko Iijima ◽  
Mengia-Seraina Rioult-Pedotti ◽  
Andreas Luft

Author(s):  
Andreas Frick ◽  
Johannes Björkstrand ◽  
Mark Lubberink ◽  
Allison Eriksson ◽  
Mats Fredrikson ◽  
...  

AbstractLearning which environmental cues that predict danger is crucial for survival and accomplished through Pavlovian fear conditioning. In humans and rodents alike, fear conditioning is amygdala-dependent and rests on similar neurocircuitry. Rodent studies have implicated a causative role for dopamine in the amygdala during fear memory formation, but the role of dopamine in aversive learning in humans is unclear. Here, we show dopamine release in the amygdala and striatum during fear learning in humans. Using simultaneous positron emission tomography and functional magnetic resonance imaging, we demonstrate that the amount of dopamine release is linked to strength of conditioned fear responses and linearly coupled to learning-induced activity in the amygdala. Thus, like in rodents, formation of amygdala-dependent fear memories in humans seems to be facilitated by endogenous dopamine release, supporting an evolutionary conserved neurochemical mechanism for aversive memory formation.


Author(s):  
Eugenii A. Rabiner ◽  
Tolga Uz ◽  
Ayla Mansur ◽  
Terry Brown ◽  
Grace Chen ◽  
...  

AbstractThe use of positron emission tomography (PET) in early-phase development of novel drugs targeting the central nervous system, is well established for the evaluation of brain penetration and target engagement. However, when novel targets are involved a suitable PET ligand is not always available. We demonstrate an alternative approach that evaluates the attenuation of amphetamine-induced synaptic dopamine release by a novel agonist of the orphan G-protein-coupled receptor GPR139 (TAK-041). GPR139 agonism is a novel candidate mechanism for the treatment of schizophrenia and other disorders associated with social and cognitive dysfunction. Ten healthy volunteers underwent [11C]PHNO PET at baseline, and twice after receiving an oral dose of d-amphetamine (0.5 mg/kg). One of the post-d-amphetamine scans for each subject was preceded by a single oral dose of TAK-041 (20 mg in five; 40 mg in the other five participants). D-amphetamine induced a significant decrease in [11C]PHNO binding potential relative to the non-displaceable component (BPND) in all regions examined (16–28%), consistent with increased synaptic dopamine release. Pre-treatment with TAK-041 significantly attenuated the d-amphetamine-induced reduction in BPND in the a priori defined regions (putamen and ventral striatum: 26% and 18%, respectively). The reduction in BPND was generally higher after the 40 mg than the 20 mg TAK-041 dose, with the difference between doses reaching statistical significance in the putamen. Our findings suggest that TAK-041 enters the human brain and interacts with GPR139 to affect endogenous dopamine release. [11C]PHNO PET is a practical method to detect the effects of novel drugs on the brain dopaminergic system in healthy volunteers, in the early stages of drug development.


2021 ◽  
Author(s):  
Carmen Klein Herenbrink ◽  
Jonatan Fullerton Stoier ◽  
William Dalseg Reith ◽  
Abeer Dagra ◽  
Miguel Alejandro Cuadrado Gregorek ◽  
...  

Dopamine serves an important role in supporting both locomotor control and higher brain functions such as motivation and learning. Dopaminergic dysfunction is implicated in an equally multidimensional spectrum of neurological and neuropsychiatric diseases. Extracellular dopamine levels are known to be tightly controlled by presynaptic dopamine transporters (DAT), which is also a main target of psychostimulants. Still, detailed data on dopamine dynamics in space and time is needed to fully understand how dopamine signals are encoded and translated into cellular and behavioral responses, and to uncover the pathological effects of dopamine-related diseases. The recently developed genetically encoded fluorescent dopamine sensors enable unprecedented monitoring of dopamine dynamics and have changed the field of in vivo dopamine recording. However, the potential of these sensors to be used for in vitro and ex vivo assays remains unexplored. Here, we demonstrate a generalizable blueprint for making dopamine 'sniffer' cells for multimodal detection of dopamine in vitro and ex vivo. We generated sniffer cell lines with inducible expression of six different dopamine sensors and performed a head-to-head comparison of sensor properties to guide users in sensor selection. In proof-of-principle experiments, we show how the sniffer cells can be applied to measure release of endogenous dopamine from cultured neurons and striatal slices, and for determining total dopamine content in striatal tissue. Furthermore, we use the sniffer cells to quantify DAT-mediated dopamine uptake, and AMPH-induced and constitutive dopamine efflux as a radiotracer free, high-throughput alternative to electrochemical- and radiotracer-based assays. Importantly, the sniffer cells framework can readily be applied to other transmitter systems for which the list of genetically encoded fluorescent sensors is rapidly growing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Prashant Donthamsetti ◽  
Nils Winter ◽  
Adam Hoagland ◽  
Cherise Stanley ◽  
Meike Visel ◽  
...  

AbstractDopamine controls diverse behaviors and their dysregulation contributes to many disorders. Our ability to understand and manipulate the function of dopamine is limited by the heterogenous nature of dopaminergic projections, the diversity of neurons that are regulated by dopamine, the varying distribution of the five dopamine receptors (DARs), and the complex dynamics of dopamine release. In order to improve our ability to specifically modulate distinct DARs, here we develop a photo-pharmacological strategy using a Membrane anchored Photoswitchable orthogonal remotely tethered agonist for the Dopamine receptor (MP-D). Our design selectively targets D1R/D5R receptor subtypes, most potently D1R (MP-D1ago), as shown in HEK293T cells. In vivo, we targeted dorsal striatal medium spiny neurons where the photo-activation of MP-D1ago increased movement initiation, although further work is required to assess the effects of MP-D1ago on neuronal function. Our method combines ligand and cell type-specificity with temporally precise and reversible activation of D1R to control specific aspects of movement. Our results provide a template for analyzing dopamine receptors.


2021 ◽  
Author(s):  
Svetlana A. Kholodar ◽  
Geoffrey Lang ◽  
Wilian A. Cortopassi ◽  
Yoshie Iizuka ◽  
Harman S. Brah ◽  
...  

The nuclear receptor-related protein, Nurr1, is a transcription factor critical for the development and maintenance of dopamine-producing neurons in the substantia nigra pars compacta, a cell population that progressively loses the ability to make dopamine and degenerates in Parkinson's disease. Recently, we demonstrated that Nurr1 binds directly to and is regulated by the endogenous dopamine metabolite 5,6-dihydroxyindole (DHI). Unfortunately, DHI is an unstable compound, and thus a poor tool for studying Nurr1 function. Here we report that 5-chloroindoe, an unreactive analog of DHI, binds directly to the Nurr1 ligand binding domain with micromolar affinity and stimulates the activity of Nurr1, including the transcription of genes governing the synthesis and packaging of dopamine.


2021 ◽  
Vol 9 (1) ◽  
pp. 28-33
Author(s):  
L.P. Novak ◽  
O.V. Tumanova

Decrease and loss of vision are extremely important problems, quite common conditions that lead to disability. The most common causes are ischemic optic neuropathy, diabetic retinopathy, and amblyopia. The pathogenesis of these disea­ses is characterized by neurodegeneration, loss of structure and function of neurons. Citicoline may be considered for neuroprotection as the drug of choice in these clinical situations. Citicoline has antioxidant and anti-inflammatory properties, it reduces lipid peroxidation and the formation of free radicals, has anti-apoptotic and membrane-protective effects. The drug has a neuromodulatory effect and also contributes to the pre­servation of sphingomyelin, which ensures signal transmission in nerve cells. In ischemic optic neuropathy, oral citicoline can reduce nerve fiber loss and improve retinal ganglion cell function and visual tract function. In diabetic retinopathy, citicoline prevents synapse loss and improves macular and retinal ganglion cell function. In amblyopia, citicoline stimulates the function of neurotransmitters and neuromodulators, including an increase in the activity of endogenous dopamine and, at the same time, an improvement in the vascular aspects of neurological function. Axobrex is a convenient oral form of citicoline. With oral administration, the bioavailability of citicoline exceeds 90 %, Axobrex is non-toxic and very well-tolerated. The dosage regimen of Axobrex is simple, which contributes to satisfactory patient adherence to treatment. The use of Axobrex in patients with ischemic optic neuropathy, diabetic retinopathy, and amblyopia has an optimal balance of benefits and safety and is advisable for neuroprotection.


2021 ◽  
Author(s):  
Andreas Frick ◽  
Johannes Björkstrand ◽  
Mark Lubberink ◽  
Allison Eriksson ◽  
Mats Fredrikson ◽  
...  

ABSTRACTLearning which environmental cues that predict danger is crucial for survival and accomplished through Pavlovian fear conditioning. In humans and rodents alike, fear conditioning is amygdala-dependent and rests on similar neurocircuitry. Rodent studies have implicated a causative role for dopamine in the amygdala during fear memory formation, but the role of dopamine in aversive learning in humans is unclear. Here, we show dopamine release in the amygdala and striatum during fear learning in humans. Using simultaneous positron emission tomography and functional magnetic resonance imaging, we demonstrate that the amount of dopamine release is linked to strength of conditioned fear responses and linearly coupled to learning-induced memory trace activity in the amygdala. Thus, like in rodents, formation of amygdala-dependent fear memories in humans seems to be facilitated by endogenous dopamine release, supporting an evolutionary conserved neurochemical mechanism for aversive memory formation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tomas Ros ◽  
Jessica Kwiek ◽  
Theo Andriot ◽  
Abele Michela ◽  
Patrik Vuilleumier ◽  
...  

Neurofeedback (NFB) is a brain-based training method that enables users to control their own cortical oscillations using real-time feedback from the electroencephalogram (EEG). Importantly, no investigations to date have directly explored the potential impact of NFB on the brain’s key neuromodulatory systems. Our study’s objective was to assess the capacity of NFB to induce dopamine release as revealed by positron emission tomography (PET). Thirty-two healthy volunteers were randomized to either EEG-neurofeedback (NFB) or EEG-electromyography (EMG), and scanned while performing self-regulation during a single session of dynamic PET brain imaging using the high affinity D2/3 receptor radiotracer, [18F]Fallypride. NFB and EMG groups down-regulated cortical alpha power and facial muscle tone, respectively. Task-induced effects on endogenous dopamine release were estimated in the frontal cortex, anterior cingulate cortex, and thalamus, using the linearized simplified reference region model (LSRRM), which accounts for time-dependent changes in radiotracer binding following task initiation. Contrary to our hypothesis of a differential effect for NFB vs. EMG training, significant dopamine release was observed in both training groups in the frontal and anterior cingulate cortex, but not in thalamus. Interestingly, a significant negative correlation was observed between dopamine release in frontal cortex and pre-to-post NFB change in spontaneous alpha power, suggesting that intra-individual changes in brain state (i.e., alpha power) could partly result from changes in neuromodulatory tone. Overall, our findings constitute the first direct investigation of neurofeedback’s effect on the endogenous release of a key neuromodulator, demonstrating its feasibility and paving the way for future studies using this methodology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon A. Sharples ◽  
Nicole E. Burma ◽  
Joanna Borowska-Fielding ◽  
Charlie H. T. Kwok ◽  
Shane E. A. Eaton ◽  
...  

Abstract Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.


Sign in / Sign up

Export Citation Format

Share Document