synaptic input
Recently Published Documents


TOTAL DOCUMENTS

589
(FIVE YEARS 63)

H-INDEX

72
(FIVE YEARS 5)

Author(s):  
Julien Rossato ◽  
Kylie J. Tucker ◽  
Simon Avrillon ◽  
Lilian Lacourpaille ◽  
Ales Holobar ◽  
...  

This study aimed to determine whether neural drive is redistributed between muscles during a fatiguing isometric contraction, and if so, whether the initial level of common synaptic input between these muscles constrains this redistribution. We studied two muscle groups: triceps surae (14 participants) and quadriceps (15 participants). Participants performed a series of submaximal isometric contractions and a torque-matched contraction maintained until task failure. We used high-density surface electromyography to identify the behavior of 1874 motor units from the soleus, gastrocnemius medialis (GM), gastrocnemius lateralis(GL), rectus femoris, vastus lateralis (VL), and vastus medialis(VM). We assessed the level of common drive between muscles in absence of fatigue using a coherence analysis. We also assessed the redistribution of neural drive between muscles during the fatiguing contraction through the correlation between their cumulative spike trains (index of neural drive). The level of common drive between VL and VM was significantly higher than that observed for the other muscle pairs, including GL-GM. The level of common drive increased during the fatiguing contraction, but the differences between muscle pairs persisted. We also observed a strong positive correlation of neural drive between VL and VM during the fatiguing contraction (r=0.82). This was not observed for the other muscle pairs, including GL-GM, which exhibited differential changes in neural drive. These results suggest that less common synaptic input between muscles allows for more flexible coordination strategies during a fatiguing task, i.e., differential changes in neural drive across muscles. The role of this flexibility on performance remains to be elucidated.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinzhe Ma ◽  
Yangyang Han ◽  
Yiting Yao ◽  
Huimei Wang ◽  
Mengxia Chen ◽  
...  

As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.


Author(s):  
Na Zhao ◽  
Wenhui Huang ◽  
Bogdan Cãtãlin ◽  
Anja Scheller ◽  
Frank Kirchhoff

NG2 (nerve/glial antigen 2) glia are uniformly distributed in the gray and white matter of the central nervous system (CNS). They are the major proliferating cells in the brain and can differentiate into oligodendrocytes. NG2 glia do not only receive synaptic input from excitatory and inhibitory neurons, but also secrete growth factors and cytokines, modulating CNS homeostasis. They express several receptors and ion channels that play a role in rapidly responding upon synaptic signals and generating fast feedback, potentially regulating their own properties. Ca2+ influx via voltage-gated Ca2+ channels (VGCCs) induces an intracellular Ca2+ rise initiating a series of cellular activities. We confirmed that NG2 glia express L-type VGCCs in the white and gray matter during CNS development, particularly in the early postnatal stage. However, the function of L-type VGCCs in NG2 glia remains elusive. Therefore, we deleted L-type VGCC subtypes Cav1.2 and Cav1.3 genes conditionally in NG2 glia by crossbreeding NG2-CreERT2 knock-in mice to floxed Cav1.2 and flexed Cav1.3 transgenic mice. Our results showed that ablation of Cav1.2 and Cav1.3 strongly inhibited the proliferation of cortical NG2 glia, while differentiation in white and gray matter was not affected. As a consequence, no difference on myelination could be detected in various brain regions. In addition, we observed morphological alterations of the nodes of Ranvier induced by VGCC-deficient NG2 glia, i.e., shortened paired paranodes in the corpus callosum. Furthermore, deletion of Cav1.2 and Cav1.3 largely eliminated N-methyl-D-aspartate (NMDA)-dependent long-term depression (LTD) and potentiation in the hippocampus while the synaptic input to NG2 glia from axons remained unaltered. We conclude that L-type VGCCs of NG2 glia are essential for cell proliferation and proper structural organization of nodes of Ranvier, but not for differentiation and myelin compaction. In addition, L-type VGCCs of NG2 glia contribute to the regulation of long-term neuronal plasticity.


2021 ◽  
Author(s):  
Sophia Wienbar ◽  
Gregory Schwartz

The output of spiking neurons depends both on their synaptic inputs and on their intrinsic properties. Retinal ganglion cells (RGCs), the spiking projection neurons of the retina, comprise over 40 different types in mice and other mammals, each tuned to different features of visual scenes. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been substantially less research aimed at understanding how the intrinsic properties of RGCs differ and how those differences impact feature selectivity. Here, we introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, whose contrast selectivity is shaped by its intrinsic properties. Surprisingly, when we compare the bSbC RGC to the OFF sustained alpha (OFFsA) RGC that receives similar synaptic input, we find that the two RGC types exhibit starkly different responses to an identical stimulus. We identified spike generation as the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block in conditions where the OFFsA RGC maintains a high spike rate. Pharmacological experiments, imaging, and compartment modeling demonstrate that these differences in spike generation are the result of differences in voltage-gated sodium channel conductances. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Attila Somogyi ◽  
Ervin Wolf

Abnormal tau proteins are involved in pathology of many neurodegenerative disorders. Transgenic rTg4510 mice express high levels of human tau protein with P301L mutation linked to chromosome 17 that has been associated with frontotemporal dementia with parkinsonism. By 9 months of age, these mice recapitulate key features of human tauopathies, including presence of hyperphosphorylated tau and neurofibrillary tangles (NFTs) in brain tissue, atrophy and loss of neurons and synapses, and hyperexcitability of neurons, as well as cognitive deficiencies. We investigated effects of such human mutant tau protein on neuronal membrane, subthreshold dendritic signaling, and synaptic input pattern recognition/discrimination in layer III frontal transgenic (TG) pyramidal neurons of 9-month-old rTg4510 mice and compared these characteristics to those of wild-type (WT) pyramidal neurons from age-matched control mice. Passive segmental cable models of WT and TG neurons were set up in the NEURON simulator by using three-dimensionally reconstructed morphology and electrophysiological data of these cells. Our computer simulations predict leakage resistance and capacitance of neuronal membrane to be unaffected by the mutant tau protein. Computer models of TG neurons showed only modest alterations in distance dependence of somatopetal voltage and current transfers along dendrites and in rise times and half-widths of somatic Excitatory Postsynaptic Potential (EPSPs) relative to WT control. In contrast, a consistent and statistically significant slowdown was detected in the speed of simulated subthreshold dendritic signal propagation in all regions of the dendritic surface of mutant neurons. Predictors of synaptic input pattern recognition/discrimination remained unaltered in model TG neurons. This suggests that tau pathology is primarily associated with failures/loss in synaptic connections rather than with altered intraneuronal synaptic integration in neurons of affected networks.


2021 ◽  
Author(s):  
Adrian C Thompson ◽  
Carlos D Aizenman

For individual neurons to function appropriately within a network that is undergoing synaptic reorganization and refinement due to developmental or experience-dependent changes in circuit activity, they must homeostatically adapt their intrinsic excitability to maintain a consistent output despite the changing levels of synaptic input. This homeostatic plasticity of excitability is particularly important for the development of sensory circuits, where subtle deficits in neuronal and circuit function cause developmental disorders including autism spectrum disorder and epilepsy. Despite the critical importance of this process for normal circuit development, the molecular mechanism by which this homeostatic control of intrinsic excitability is regulated is not fully understood. Here, we demonstrate that Xenopus optic tectal neurons express distinct fast, persistent and resurgent Na+ currents. Here, we demonstrate that Xenopus optic tectal neurons express distinct fast, persistent and resurgent Na+ currents. These are regulated with developmental changes in synaptic input, and homeostatically in response to changes in visual input. We show that expression of the voltage-gated Na+ channel subtype Nav1.6 is regulated with changes in intrinsic excitability, that blocking Nav1.6 channels is sufficient to decrease intrinsic excitability. Furthermore, that upregulation of Nav1.6 expression is necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Finally, by examining behaviors that rely on visual and multisensory integration, we extend these findings to show that tight regulation of Na+ channel gene expression during a critical period of tectal circuit development is required for the normal functional development of the tectal circuitry.


2021 ◽  
pp. 108779
Author(s):  
Magdalena Kusek ◽  
Marcin Siwiec ◽  
Joanna E. Sowa ◽  
Bartosz Bobula ◽  
Wiktor Bilecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document