The effect of retinal growth on the postnatal development and distribution of displaced retinal ganglion cells in the retina of the chameleon (squamata)

2003 ◽  
Vol 20 (3) ◽  
pp. 273-283 ◽  
Author(s):  
MATTHIAS OTT ◽  
BRENO BELLINTANI-GUARDIA

Retinal ganglion cells (RGCs) usually increase their dendritic field area with postnatal retinal growth. The mechanisms that regulate the postnatal shape of dendritic arbors in the growing retina are not well understood. Quantitative studies suffer from the difficulty of labeling specific subpopulations of RGCs selectively including their dendritic processes. In this study, we labeled displaced retinal ganglion cells (DGC) that are known to project to the accessory optic system (AOS) in juvenile and adult chameleons by retrograde transport of dextran amines. The complete population of DGCs was quantitatively screened for the effects of postnatal retinal growth on cell morphology, dendritic field coverage, and dendritic arbor size. The adult eye contained 2000 DGCs/retina. This number was already present at birth. The smaller size of the hatchling eye (approximately 1/3 of the adult size) led to higher densities of DGCs. The greatest accumulation of juvenile DGCs (two-fold higher compared to the adult) was found in the periphery of the retina where the greatest surface expansion was observed. DGC dendritic field areas were adjusted proportionally to this expansion in order to maintain a constant dendritic coverage. The increase of dendritic fields was mediated by two putative passive mechanisms: First, an elongation of individual dendrites similar to previous reports of postnatal RGC development in the retina of goldfish and chicks. Second, and more prominent, we observed that neighboring dendrites were pulled apart from each other. This resulted in a looser spacing of the initially tightly packed dendrites of each dendritic arbor. This dispersal of dendrites over a larger area was, due to its passive nature, proportional to the increase of the retinal surface and preserved a constant dendritic coverage irrespective of the animal's age and eye size.

1980 ◽  
Vol 190 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Clyde W. Oyster ◽  
John I. Simpson ◽  
Ellen S. Takahashi ◽  
Robert E. Soodak

1997 ◽  
Vol 78 (2) ◽  
pp. 614-627 ◽  
Author(s):  
Naoki Kogo ◽  
Michael Ariel

Kogo, Naoki and Michael Ariel. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. J. Neurophysiol. 78: 614–627, 1997. Using an eye-attached isolated brain stem preparation of a turtle, Pseudemys scripta elegans, in conjunction with whole cell patch techniques, we recorded intracellular activity of accessory optic system neurons in the basal optic nucleus (BON). This technique offered long-lasting stable recordings of individual synaptic events. In the reduced preparation (most of the dorsal structures were removed), large spontaneous excitatory synaptic inputs [excitatory postsynaptic potentials (EPSPs)] were frequently recorded. Spontaneous inhibitory postsynaptic potentials were rarely observed except in few cases. Most EPSPs disappeared after injection of lidocaine into the retina. A few EPSPs of small size remained, suggesting that these EPSPs either were from intracranial sources or may have been miniature spontaneous synaptic potentials from retinal ganglion cell axon terminals. Population EPSPs were synchronously evoked by electrical stimulation of the contralateral optic nerve. Their constant onset latency and their ability to follow short-interval paired stimulation indicated that much of the population EPSP's response was monosynaptic. Visually evoked BON spikes and EPSP inputs to BON showed direction sensitivity when a moving pattern was projected onto the entire contralateral retina. With the use of smaller moving patterns, the receptive field of an individual BON cell was identified. A small spot of light, projected within the receptive field, guided the placement of a bipolar stimulation electrode to activate retinal ganglion cells that provided input to that BON cell. EPSPs evoked by this retinal microstimulation showed features of unitary EPSPs. Those EPSPs had distinct low current thresholds. Recruitment of other inputs was only evident when the stimulation level was increased substantially above threshold. The average size of evoked unitary EPSPs was 7.8 mV, confirming the large size of synaptic inputs of this system relative to nonsynaptic noise. EPSP shape was plotted (rise time vs. amplitude), with the use of either evoked unitary EPSPs or spontaneous EPSPs. Unlike samples of spontaneous EPSPs, data from many unitary EPSPs formed distinct clusters in these scatterplots, indicating that these EPSPs had a unique shape among the whole population of EPSPs. In most BON cells studied, hyperpolarization-activated channels caused a slow depolarization sag that reached a plateau within 0.5–1 s. This property suggests that BON cells may be more complicated than a simple site for convergence of direction-sensitive retinal ganglion cells to form a central retinal slip signal for control of oculomotor reflexes.


1992 ◽  
Vol 9 (6) ◽  
pp. 603-616 ◽  
Author(s):  
Michael A. Kirby ◽  
Thomas C. Steineke

AbstractThe morphology of retinal ganglion cells within the central retina during formation of the fovea was examined in retinal explants with horseradish-peroxidase histochemistry. A foveal depression was first apparent in retinal wholemounts at embryonic day 112 (El 12; gestational term is approximately 165 days). At earlier fetal ages, the site of the future fovea was identified by several criteria that included peak density of ganglion cells, lack of blood vessels in the inner retinal layers, arcuate fiber bundles, and the absence of rod outer segments in the photoreceptor layer. Prior to E112, the terminal dendritic arbor of retinal ganglion cells within the central retina extended into the inner plexiform layer and were located directly beneath their somas of origin or at most were slightly displaced from it. For example, at E90 the mean horizontal displacement of the geometric center of the dendritic arbor from the somas of cells within 600 μm of the estimated center of the future fovea was 4.1 μm (S.D. 2.7, range 1.0-10.0, n = 97). Following formation of the foveal depression the dendritic arbors of cells were significantly displaced from their somas. For example, at E138 the mean displacement was 41.2 μm (S.D. 12.2, range 12.0-56.0, n = 97). The displacement of the dendritic arbor which occurred during this period was not accounted for by areal growth of the dendritic arbor, the somas, or the retina, but was produced by the lengthening of the primary dendritic trunk. Moreover, no significant displacement was observed within the remaining 1.5–6.5 mm of the central retina. These observations provide evidence supporting early speculations that the formation of the foveal pit occurs, in part, by the radial migration of ganglion cells from the center of the fovea during its formation. Our analyses suggest that this migration occurs by the lengthening of the primary dendrite presumably by the addition of membrane. This migration is in a direction opposite to the inward movement of photoreceptors that occurs during late fetal and early postnatal periods (Packer et al., 1990, Journal of Comparative Neurology 298, 472–493).


2019 ◽  
Vol 20 (17) ◽  
pp. 4314 ◽  
Author(s):  
Marie Claes ◽  
Lies De Groef ◽  
Lieve Moons

Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.


Sign in / Sign up

Export Citation Format

Share Document