scholarly journals Learning and meta-learning of stochastic advection–diffusion–reaction systems from sparse measurements

Author(s):  
XIAOLI CHEN ◽  
JINQIAO DUAN ◽  
GEORGE EM KARNIADAKIS

Physics-informed neural networks (PINNs) were recently proposed in [18] as an alternative way to solve partial differential equations (PDEs). A neural network (NN) represents the solution, while a PDE-induced NN is coupled to the solution NN, and all differential operators are treated using automatic differentiation. Here, we first employ the standard PINN and a stochastic version, sPINN, to solve forward and inverse problems governed by a non-linear advection–diffusion–reaction (ADR) equation, assuming we have some sparse measurements of the concentration field at random or pre-selected locations. Subsequently, we attempt to optimise the hyper-parameters of sPINN by using the Bayesian optimisation method (meta-learning) and compare the results with the empirically selected hyper-parameters of sPINN. In particular, for the first part in solving the inverse deterministic ADR, we assume that we only have a few high-fidelity measurements, whereas the rest of the data is of lower fidelity. Hence, the PINN is trained using a composite multi-fidelity network, first introduced in [12], that learns the correlations between the multi-fidelity data and predicts the unknown values of diffusivity, transport velocity and two reaction constants as well as the concentration field. For the stochastic ADR, we employ a Karhunen–Loève (KL) expansion to represent the stochastic diffusivity, and arbitrary polynomial chaos (aPC) to represent the stochastic solution. Correspondingly, we design multiple NNs to represent the mean of the solution and learn each aPC mode separately, whereas we employ a separate NN to represent the mean of diffusivity and another NN to learn all modes of the KL expansion. For the inverse problem, in addition to stochastic diffusivity and concentration fields, we also aim to obtain the (unknown) deterministic values of transport velocity and reaction constants. The available data correspond to 7 spatial points for the diffusivity and 20 space–time points for the solution, both sampled 2000 times. We obtain good accuracy for the deterministic parameters of the order of 1–2% and excellent accuracy for the mean and variance of the stochastic fields, better than three digits of accuracy. In the second part, we consider the previous stochastic inverse problem, and we use Bayesian optimisation to find five hyper-parameters of sPINN, namely the width, depth and learning rate of two NNs for learning the modes. We obtain much deeper and wider optimal NNs compared to the manual tuning, leading to even better accuracy, i.e., errors less than 1% for the deterministic values, and about an order of magnitude less for the stochastic fields.

2021 ◽  
Author(s):  
Alexey Penenko ◽  
Vladimir Penenko ◽  
Elena Tsvetova ◽  
Alexander Gochakov ◽  
Elza Pyanova ◽  
...  

<p>Air quality monitoring systems vary in temporal and spatial coverage, the composition of the observed chemicals, and the data's accuracy. The developed inverse modeling approach [1] is based on sensitivity operators and ensembles of adjoint equations solutions. An inverse problem is transformed to a quasi-linear operator equation with the sensitivity operator. The sensitivity operator is composed of the sensitivity functions, which are evaluated on the adjoint ensemble members. The members correspond to the measurement data elements. </p><p>This ensemble construction allows working in a unified way with heterogeneous measurement data in a single operator equation. The quasi-linear structure of the resulting operator equation allows both solving and analyzing the inverse problem. More specifically, by analyzing the sensitivity operator's singular structure, we can estimate the informational content in the measurement data with respect to the considered process model. This type of analysis can estimate the inverse problem solution before its actual solution and evaluate the monitoring system efficiency with respect to the considered inverse modeling task [1,2]. </p><p>Numerical experiments with the emission source identification problem for air pollution transport and transformation model were carried out to illustrate the developed framework. In the numerical experiments, we considered in-situ, image-type, and integral-type measurement data.</p><p>The work was supported by the grant №075-15-2020-787 in the form of a subsidy for a Major scientific project from Ministry of Science and Higher Education of Russia (project "Fundamentals, methods and technologies for digital monitoring and forecasting of the environmental situation on the Baikal natural territory").</p><p><strong>References</strong></p><p>[1] Penenko, A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements // Inverse Problems & Imaging, American Institute of Mathematical Sciences (AIMS), 2020, 14, 757-782 doi: 10.3934/ipi.2020035</p><p>[2] Penenko, A.; Gochakov, A. & Penenko, V. Algorithms based on sensitivity operators for analyzing and solving inverse modeling problems of transport and transformation of atmospheric pollutants // IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2020, 611, 012032 doi: 10.1088/1755-1315/611/1/012032</p>


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Christian Engwer ◽  
Michael Wenske

AbstractGlioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection–diffusion–reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.


2005 ◽  
Vol 15 (07) ◽  
pp. 1119-1139 ◽  
Author(s):  
RODOLFO ARAYA ◽  
ABNER H. POZA ◽  
ERNST P. STEPHAN

In this work we introduce a new a posteriori error estimate of hierarchical type for the advection-diffusion-reaction equation. We prove the equivalence between the energy norm of the error and our error estimate using an auxiliary linear problem for the residual and an easy way to prove inf–sup condition.


Sign in / Sign up

Export Citation Format

Share Document