Another look at recent results concerning bifurcation in one-dimensional models of superconductivity

2000 ◽  
Vol 11 (1) ◽  
pp. 121-128 ◽  
Author(s):  
S. P. HASTINGS

In the preceding paper of this issue of EJAM, Bolley & Helffer [5] add to their extensive set of results on bifurcation in the one-dimensional Ginzburg–Landau model of superconductivity. One of their new results concerns the direction of bifurcation of symmetric solutions. We give another approach to this problem.

1997 ◽  
Vol 8 (4) ◽  
pp. 331-345 ◽  
Author(s):  
AMANDINE AFTALION

The Ginzburg–Landau model for superconductivity is examined in the one-dimensional case. First, putting the Ginzburg–Landau parameter κ formally equal to infinity, the existence of a minimizer of this reduced Ginzburg–Landau energy is proved. Then asymptotic behaviour for large κ of minimizers of the full Ginzburg–Landau energy is analysed and different convergence results are obtained, according to the exterior magnetic field. Numerical computations illustrate the various behaviours.


2000 ◽  
Vol 11 (3) ◽  
pp. 271-291 ◽  
Author(s):  
E. N. DANCER ◽  
S. P. HASTINGS

Some new global results are given about solutions to the boundary value problem for the Euler–Lagrange equations for the Ginzburg–Landau model of a one-dimensional superconductor. The main advance is a proof that in some parameter range there is a branch of asymmetric solutions connecting the branch of symmetric solutions to the normal state. Also, simplified proofs are presented for some local bifurcation results of Bolley and Helffer. These proofs require no detailed asymptotics for solution of the linear equations. Finally, an error in Odeh's work on this problem is discussed.


2018 ◽  
Vol 145 ◽  
pp. 01009 ◽  
Author(s):  
Vassil M. Vassilev ◽  
Daniel M. Dantchev ◽  
Peter A. Djondjorov

In this article we consider a critical thermodynamic system with the shape of a thin film confined between two parallel planes. It is assumed that the state of the system at a given temperature and external ordering field is described by order-parameter profiles, which minimize the one-dimensional counterpart of the standard ϕ4 Ginzburg–Landau Hamiltonian and meet the so-called Neumann – Neumann boundary conditions. We give analytic representation of the extremals of this variational problem in terms ofWeierstrass elliptic functions. Then, depending on the temperature and ordering field we determine the minimizers and obtain the phase diagram in the temperature-field plane.


1992 ◽  
Vol 57 (3-4) ◽  
pp. 241-248 ◽  
Author(s):  
B.I. Shraiman ◽  
A. Pumir ◽  
W. van Saarloos ◽  
P.C. Hohenberg ◽  
H. Chaté ◽  
...  

1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


1997 ◽  
Vol 55 (5) ◽  
pp. 5073-5081 ◽  
Author(s):  
Alessandro Torcini ◽  
Helge Frauenkron ◽  
Peter Grassberger

Sign in / Sign up

Export Citation Format

Share Document