Building domains from graph models

1992 ◽  
Vol 2 (3) ◽  
pp. 277-299 ◽  
Author(s):  
Wesley Phoa

In this paper we study partial equivalence relations (PERs) over graph models of the λcalculus. We define categories of PERs that behave like predomains, and like domains. These categories are small and complete; so we can solve domain equations and construct polymorphic types inside them. Upper, lower and convex powerdomain constructions are also available, as well as interpretations of subtyping and bounded quantification. Rather than performing explicit calculations with PERs, we work inside the appropriate realizability topos: this is a model of constructive set theory in which PERs, can be regarded simply as special kinds of sets. In this framework, most of the definitions and proofs become quite smple and attractives. They illustrative some general technicques in ‘synthetic domain theory’ that rely heavily on category theory; using these methods, we can obtain quite powerful results about classes of PERs, even when we know very little about their internal structure.

Author(s):  
Cesare Gallozzi

Abstract We introduce a family of (k, h)-interpretations for 2 ≤ k ≤ ∞ and 1 ≤ h ≤ ∞ of constructive set theory into type theory, in which sets and formulas are interpreted as types of homotopy level k and h, respectively. Depending on the values of the parameters k and h, we are able to interpret different theories, like Aczel’s CZF and Myhill’s CST. We also define a proposition-as-hproposition interpretation in the context of logic-enriched type theories. The rest of the paper is devoted to characterising and analysing the interpretations considered. The formulas valid in the prop-as-hprop interpretation are characterised in terms of the axiom of unique choice. We also analyse the interpretations of CST into homotopy type theory, providing a comparative analysis with Aczel’s interpretation. This is done by formulating in a logic-enriched type theory the key principles used in the proofs of the two interpretations. Finally, we characterise a class of sentences valid in the (k, ∞)-interpretations in terms of the ΠΣ axiom of choice.


2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

2014 ◽  
pp. 47-83 ◽  
Author(s):  
Andrea Cantini ◽  
Laura Crosilla

1981 ◽  
Vol 6 (3) ◽  
pp. 58-60
Author(s):  
Robert L. Constable

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Pierre Schapira

Set theory, category theory, and topology. Pierre Schapira explores the concept of identity within category theory, and what it means for the properties to be satisfied only up to homotopy.


Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


Sign in / Sign up

Export Citation Format

Share Document