scholarly journals Extensions of unification modulo ACUI

2019 ◽  
Vol 30 (6) ◽  
pp. 597-626 ◽  
Author(s):  
Franz Baader ◽  
Pavlos Marantidis ◽  
Antoine Mottet ◽  
Alexander Okhotin

AbstractThe theory ACUI of an associative, commutative, and idempotent binary function symbol + with unit 0 was one of the first equational theories for which the complexity of testing solvability of unification problems was investigated in detail. In this paper, we investigate two extensions of ACUI. On one hand, we consider approximate ACUI-unification, where we use appropriate measures to express how close a substitution is to being a unifier. On the other hand, we extend ACUI-unification to ACUIG-unification, that is, unification in equational theories that are obtained from ACUI by adding a finite set G of ground identities. Finally, we combine the two extensions, that is, consider approximate ACUI-unification. For all cases we are able to determine the exact worst-case complexity of the unification problem.

2015 ◽  
Vol 10 (4) ◽  
pp. 699-708 ◽  
Author(s):  
M. Dodangeh ◽  
L. N. Vicente ◽  
Z. Zhang

Author(s):  
Federico Della Croce ◽  
Bruno Escoffier ◽  
Marcin Kamiski ◽  
Vangelis Th. Paschos

Author(s):  
J. G. Basterfield ◽  
L. M. Kelly

Suppose N is a set of points of a d-dimensional incidence space S and {Ha}, a ∈ I, a set of hyperplanes of S such that Hi ∈ {Ha} if and only if Hi ∩ N spans Hi. N is then said to determine {Ha}. We are interested here in the case in which N is a finite set of n points in S and I = {1, 2,…, n}; that is to say when a set of n points determines precisely n hyperplanes. Such a situation occurs in E3, for example, when N spans E3 and is a subset of two (skew) lines, or in E2 if N spans the space and n − 1 of the points are on a line. On the other hand, the n points of a finite projective space determine precisely n hyperplanes so that the structure of a set of n points determining n hyperplanes is not at once transparent.


2009 ◽  
Vol 29 (2) ◽  
pp. 569-578 ◽  
Author(s):  
PILAR HERREROS

AbstractWe say that a pair of points x and y is secure if there exists a finite set of blocking points such that any geodesic between x and y passes through one of the blocking points. The main point of this paper is to exhibit new examples of blocking phenomena in both the manifold and the billiard table settings. In approaching this, we study whether a product of secure configurations (or manifolds) is also secure. We introduce the concept of midpoint security which requires that the geodesic reaches a blocking point exactly at its midpoint. We prove that products of midpoint secure configurations are midpoint secure. On the other hand, we construct a compact C1 surface which contains secure configurations that are not midpoint secure. This surface provides the first example of an insecure product of secure configurations, and generates billiard tables with similar blocking behavior.


Sign in / Sign up

Export Citation Format

Share Document