scholarly journals Uniform Mixing and Association Schemes

10.37236/4745 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Chris Godsil ◽  
Natalie Mullin ◽  
Aidan Roy

We consider continuous-time quantum walks on distance-regular graphs. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing.First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph $X$ with $n$ vertices, then $n$ is divisible by four. We also prove that if $X$ is bipartite and regular, then $n$ is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on $C_{2m}$ for $m \geq 3$. Using a result of Haagerup, we show that uniform mixing does not occur on $C_p$ for any prime $p$ such that $p \geq 5$. In contrast to this result, we see that $\epsilon$-uniform mixing occurs on $C_p$ for all primes $p$.

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


10.37236/754 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Coolsaet ◽  
J. Degraer

During the past few years we have obtained several new computer classification results on association schemes and in particular distance regular and strongly regular graphs. Central to our success is the use of two algebraic constraints based on properties of the minimal idempotents $E_{i}$ of these association schemes : the fact that they are positive semidefinite and that they have known rank. Incorporating these constraints into an actual isomorph-free exhaustive generation algorithm turns out to be somewhat complicated in practice. The main problem to be solved is that of numerical inaccuracy: we do not want to discard a potential solution because a value which is close to zero is misinterpreted as being negative (in the first case) or nonzero (in the second). In this paper we give details on how this can be accomplished and also list some new classification results that have been recently obtained using this technique: the uniqueness of the strongly regular $(126,50,13,24)$ graph and some new examples of antipodal distance regular graphs. We give an explicit description of a new antipodal distance regular $3$-cover of $K_{14}$, with vertices that can be represented as ordered triples of collinear points of the Fano plane.


10.37236/1710 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
L. K. Jørgensen ◽  
M. Klin

We present 15 new partial difference sets over 4 non-abelian groups of order 100 and 2 new strongly regular graphs with intransitive automorphism groups. The strongly regular graphs and corresponding partial difference sets have the following parameters: (100,22,0,6), (100,36,14,12), (100,45,20,20), (100,44,18,20). The existence of strongly regular graphs with the latter set of parameters was an open question. Our method is based on combination of Galois correspondence between permutation groups and association schemes, classical Seidel's switching of edges and essential use of computer algebra packages. As a by-product, a few new amorphic association schemes with 3 classes on 100 points are discovered.


10.37236/5982 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Chris Godsil ◽  
Krystal Guo ◽  
Tor G. J. Myklebust

We study the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of $S^+(U^3)$, a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We probabilistically compute the spectrum of the line intersection graphs of two non-isomorphic generalized quadrangles of order $(5^2,5)$ under this matrix and thus provide strongly regular counter-examples to the conjecture.


Sign in / Sign up

Export Citation Format

Share Document