Critical obstruction of the right ventricular outflow tract by a primary hemangioendothelioma in a seven month old

1999 ◽  
Vol 9 (2) ◽  
pp. 185-188 ◽  
Author(s):  
Hilary A. Robinson ◽  
Barry R. Keeton ◽  
Isabella E. Moore

AbstractA 7-month-old presented with failure to thrive and a murmur. Echocardiography demonstrated a large mass in the right ventricular outflow tract, extending through the pulmonary valve. During anaesthetic induction this caused critical obstruction of the outflow tract and cardiac arrest. Pathological diagnosis showed the lesion to be a primary hemangioendothelioma. Despite surgical excision and steroid therapy, the mass continued to grow for a period of 8 weeks, but then began to regress spontaneously.

2021 ◽  
pp. 1-4
Author(s):  
Baher M. Hanna ◽  
Wesam E. El-Mozy ◽  
Sonia A. El-Saiedi

Abstract Isolated sub-pulmonary membrane is a rare condition, the origin of which has been debatable. Transcatheter treatment of pulmonary valve atresia with intact interventricular septum by radiofrequency perforation and balloon dilatation to restore biventricular circulation is gaining more popularity, with improving results over time. We report in our experience of 79 cases in 10 years the development of a sub-pulmonary membrane in 4 cases: causing significant obstruction requiring surgical excision in one case that revealed a fibrous membrane on pathology; causing mild right ventricular outflow tract obstruction in another and not yet causing obstruction in 2. On cardiac MRI, the right ventricular outflow tract and the right ventricular outflow tract/pulmonary atresia angle showed no morphological abnormalities.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
C Fiore ◽  
A M F Ali ◽  
T Kemaloglu Oz ◽  
G Cagnazzo ◽  
M Melone ◽  
...  

Abstract A 77-year-old female, known hypertensive and dyslipidemic on treatment presented with three episodes of syncope in the last two months. On examination; there was grade 4/6 harsh systolic murmur on the lateral sternal border. Transthoracic echocardiography was difficult because of mesocardia and abnormal rotation of the heart due to enlarged right sided chambers. There is mild left ventricular hypertrophy with normal ejection fraction, no left sided valvular disease. The right ventricle was hypertrophied and dilated with normal RV function. The pulmonary valve was thickened with significant systolic flow aliasing through the valve with significant regurgitation and huge main pulmonary trunk aneurysm (59 mm at its wideset diameter) (Figure 1). Transthoracic approach did not allow a correct alignment of the Doppler CW and the correct estimate of pulmonary valvulopathy; TEE was performed with a correct visualization of the valve in deep transgastric projection at 90 degrees. The valve was thickened, fibrotic, degenerated with systolic doming of leaflets (Figure 2) and peak systolic gradient ∼ 70 mmHg (Figure 3). 3D reconstruction of the valve showed a tricuspid valve (Figure 4) with a valve area ∼ 0.9 cm2 using planimetry in MPR (Figure 5). CT scan was performed which confirmed the main pulmonary trunk aneurysm ∼ 60 mm (Figure 6). Therefore, in light of the clinical and instrumental picture, the patient was referred to heart team discussion for the plan of surgical intervention. Discussion According to the ESC guidelines for grown up congenital heart disease in 2010, this pulmonary valve should be intervened upon as it is severe symptomatic PS (1), but there are 2 problems with this case; the first is significant associated PR, so no place for balloon dilatation here, the second problem is the pulmonary artery aneurysm (PAA). The dilemma of management of pulmonary PAA is that all the available data are about aortic aneurysms. Indications for intervention for PAA include: Absolute PAA diameter ≥ 5.5 cm, Increase in the diameter of the aneurysm of ≥ 0.5 cm in 6 mo, Compression of adjacent structures, Thrombus formation in the aneurysm sack, Evidence of valvular pathologies or shunt flow Verification of PAH, Signs of rupture or dissection (2). Surgery could include: Aneurysmorrhaphy only decreases the diameter of the vessel (3). Aneurysmectomy and repair or replacement of the right ventricular outflow tract is commonly used technique recently and mostly suits connective tissue disorders (6). Also, Replacement of the PA and the pulmonary trunk with a conduit (Gore-Tex or Dacron tubes, homografts, or xenografts) starting in the right ventricular outflow tract with replacement of the pulmonary valve (4). Conclusion PAA management is currently challenging because there are no clear guidelines on its optimal treatment. The presence of significant pulmonary valve dysfunction could affect the decision making of the associated PAA management. Abstract P180 Figure.


2015 ◽  
Vol 2015 ◽  
pp. 1-2 ◽  
Author(s):  
Kevin B. Ricci ◽  
Peter H. U. Lee ◽  
Michael Essandoh ◽  
Ahmet Kilic

Septic pulmonary emboli (SPE) can be a difficult clinical entity to distinguish from thromboembolic pulmonary embolism (TPE) in a patient with history of IV drug abuse (IVDA). We present a case of a patient who presented with failure to thrive and presumed diagnosis of recurrent PE that ultimately was discovered to have fungal pulmonary valve endocarditis resulting in a right ventricular outflow obstruction. This required replacement of the pulmonary valve and repair of the right ventricular outflow tract. This case highlights difficulty in differentiating pulmonary valve endocarditis with septic emboli from chronic PE in a patient with a complex medical history.


2008 ◽  
Vol 18 (6) ◽  
pp. 608-614 ◽  
Author(s):  
Guo-Wei He ◽  
Xiao-Cheng Liu ◽  
Xiang-Rong Kong ◽  
Li-Xin Liu ◽  
Ying-Qun Yan ◽  
...  

AbstractObjectivesThe strategies of repair of tetralogy of Fallot change with the age of patients. In children older than 4 years and adults, the optimal strategy may be to use different method of reconstruction of the right ventricular outflow tract from those followed in younger children, so as to avoid, or reduce, the pulmonary insufficiency that is increasingly known to compromise right ventricular function.MethodsFrom April, 2001, through May, 2008, we undertook complete repair in 312 patients, 180 male and 132 female, with a mean age of 11.3 years ±0.4 years, and a range from 4 to 48 years, with typical clinical and morphological features of tetralogy of Fallot, including 42 patients with the ventriculo-arterial connection of double outlet right ventricle. The operation was performed under moderate hypothermia using blood cardioplegia. The ventricular septal defect was closed with a Dacron patch. When it was considered necessary to resect the musculature within the right ventricular outflow tract, or perform pulmonary valvotomy, we sought to preserve the function of the pulmonary valve by protecting as far as possible the native leaflets, or creating a folded monocusp of autologous pericardium.ResultsThe repair was achieved completely through right atrium in 192, through the right ventricular outflow tract in 83, and through the right atrium, the outflow tract, and the pulmonary trunk in 36 patients. A transjunctional patch was inserted in 169 patients, non-valved in all but 9. There were no differences regarding the periods of aortic cross-clamping or cardiopulmonary bypass. Of the patients, 5 died (1.6%), with no influence noted for the transjunctional patch. Of those having a non-valved patch inserted, three-tenths had pulmonary regurgitation of various degree, while those having a valved patch had minimal pulmonary insufficiency and good right ventricular function postoperatively, this being maintained after follow-up of 8 to 24-months.ConclusionsBased on our experience, we suggest that the current strategy of repair of tetralogy of Fallot in older children and adults should be based on minimizing the insertion of transjunctional patches, this being indicated only in those with very small ventriculo-pulmonary junctions. If such a patch is necessary, then steps should be taken to preserve the function of the pulmonary valve.


2005 ◽  
Vol 15 (S1) ◽  
pp. 58-63 ◽  
Author(s):  
James A. Quintessenza ◽  
Jeffrey P. Jacobs ◽  
Paul J. Chai ◽  
Victor O. Morell ◽  
Jorge M. Giroud ◽  
...  

After repair of tetralogy of Fallot, many patients present in need of reoperative surgical reconstruction of the right ventricular outflow tract. The predominant physiologic lesion is pulmonary insufficiency, but there may also be varying degrees of obstruction of the right ventricular outflow tract. In the past, it has been felt that patients tolerate pulmonary insufficiency reasonably well. In some patients, however, the long-term effects of pulmonary insufficiency and subsequent right ventricular dilation and dysfunction are associated with poor exercise tolerance and increased incidence of arrhythmias and sudden death.1,2 Numerous studies support replacement of the pulmonary valve as treatment for pulmonary insufficiency in order to improve performance, optimize hemodynamics, and better control arrhythmias.3–10 The indications for reconstruction of the right ventricular outflow tract in this setting, nonetheless, as well as the operative strategy, continue to evolve. There are multiple surgical options for replacement of the pulmonary valve for these patients, including aortic and pulmonary homografts, stented and stentless porcine valves, porcine valved conduits, bovine jugular venous conduits, and even mechanical valves and mechanical valved conduits.11–32 It was a less than ideal experience with these currently available options that stimulated our interest into employing alternative materials and techniques. Favorable experimental and clinical experience with valves made of a polytetrafluoroethylene monoleaflet33–36 encouraged us to consider a new method of reconstruction with this material, using a bifoliate polytetrafluoroethylene valve. In this work, we review our indications for replacement of the pulmonary valve after repair of tetralogy of Fallot, the surgical options available, and our experience reconstructing the right ventricular outflow tract with a new surgically created bifoliate polytetrafluoroethylene valve.


Sign in / Sign up

Export Citation Format

Share Document