The diverse cardiac morphology seen in hearts with isomerism of the atrial appendages with reference to the disposition of the specialised conduction system

2006 ◽  
Vol 16 (5) ◽  
pp. 437-454 ◽  
Author(s):  
Audrey Smith ◽  
Siew Yen Ho ◽  
Robert H. Anderson ◽  
M. Gwen Connell ◽  
Robert Arnold ◽  
...  

Congenital cardiac malformations which include isomerism of the atrial appendages are amongst the most challenging of problems for diagnosis and also for medical and surgical management. The nomenclature for pathological description is controversial, but difficulties can be overcome by the use of a segmental approach. Such an approach sets out the morphology and the topology of the chambers of the heart, together with the types and modes of the atrioventricular, ventriculo-arterial, and venous connections. We have applied this method to a study of 35 hearts known to have isomerism of the atrial appendages. We have already published accounts of 27 of these cases, but these were reviewed for this study in the light of our increased awareness of the implications of isomerism, and 8 new cases were added. After examining, or re-examining, the morphology of every heart in detail, we grouped them together according to their ventricular topology and modes of atrioventricular connection. Then we studied the course of the specialised conduction system, by the use of the light microscope, first in each individual case, and then together in their groups. We conclude that the pathways for atrioventricular conduction in hearts with isomerism of the atrial appendages are conditioned both by ventricular topology, and by the atrioventricular connections. Based on our experience, we have been able to establish guidelines that direct the clinician to the likely location of the conduction tissues.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sang-Hoon Seol ◽  
Ki-Hun Kim ◽  
Jino Park ◽  
Yeo-Jeong Song ◽  
Dong-Kie Kim ◽  
...  

AbstractHypertrophic cardiomyopathy (HCM) is associated with an increased incidence of Wolff–Parkinson–White (WPW) syndrome and atrial fibrillation. However, a delta-like wide QRS can be observed in the hypertrophied myocardium. When considering the rarity of the paraseptal bypass tract (BT), the normal QRS axis suggests a higher possibility of HCM origin. Otherwise, there is no known electrocardiographic clue indicating a wide QRS differentiation between HCM and WPW syndrome. Moreover, the atriofascicular, nodofascicular/ventricular or fasciculoventricular BT should be differentiated. In this case, atrioventricular conduction system incidental injury revealed a wide QRS origin from the HCM, but this method should be avoided except in some selected cases.


1982 ◽  
Vol 49 (4) ◽  
pp. 1012 ◽  
Author(s):  
John J. Gallagher ◽  
Robert H. Svenson ◽  
Jack H. Kasell ◽  
Lawrence D. German ◽  
Gust Bardy ◽  
...  

Circulation ◽  
1975 ◽  
Vol 52 (6) ◽  
pp. 1012-1022 ◽  
Author(s):  
C P Reddy ◽  
A N Damato ◽  
M Akhtar ◽  
J B Ogunkelu ◽  
A R Caracta ◽  
...  

1931 ◽  
Vol 49 (2) ◽  
pp. 167-192 ◽  
Author(s):  
John C. Cardwell ◽  
David I. Abramson

1993 ◽  
Vol 105 (4) ◽  
pp. 985-991 ◽  
Author(s):  
R.G. Gourdie ◽  
N.J. Severs ◽  
C.R. Green ◽  
S. Rothery ◽  
P. Germroth ◽  
...  

Electrical coupling between heart muscle cells is mediated by specialised regions of sarcolemmal interaction termed gap junctions. In previous work, we have demonstrated that connexin42, a recently identified gap-junctional protein, is present in the specialised conduction tissues of the avian heart. In the present study, the spatial distribution of the mammalian homologue of this protein, connexin40, was examined using immunofluorescence, confocal scanning laser microscopy and quantitative digital image analysis in order to determine whether a parallel distribution occurs in rat. Connexin40 was detected by immunofluorescence in all main components of the atrioventricular conduction system including the atrioventricular node, atrioventricular bundle, and Purkinje fibres. Quantitation revealed that levels of connexin40 immunofluorescence increased along the axis of atrioventricular conduction, rising over 10-fold between atrioventricular node and atrioventricular bundle and a further 10-fold between atrioventricular bundle and Purkinje fibres. Connexin40 and connexin43, the principal gap-junctional protein of the mammalian heart, were co-localised within atrioventricular nodal tissues and Purkinje fibres. By applying a novel photobleach/double-labelling protocol, it was demonstrated that connexin40 and connexin43 are co-localised in precisely the same Purkinje fibre myocytes. A model, integrating data on the spatial distribution and relative abundance of connexin40 and connexin43 in the heart, proposes how myocyte-type-specific patterns of connexin isform expression account for the electrical continuity of cardiac atrioventricular conduction.


Sign in / Sign up

Export Citation Format

Share Document