Cytoskeletal Architecture and Macromolecular Structure in Intact Eukaryotic Cells Revealed by Cryo-Electron Tomography

2003 ◽  
Vol 9 (S03) ◽  
pp. 380-381
Author(s):  
O. Medalia ◽  
G. Gerisch ◽  
W. Baumeister
PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001319
Author(s):  
Alister Burt ◽  
Lorenzo Gaifas ◽  
Tom Dendooven ◽  
Irina Gutsche

Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.


Author(s):  
Alister Burt ◽  
Lorenzo Gaifas ◽  
Tom Dendooven ◽  
Irina Gutsche

AbstractCryo-electron tomography and subtomogram averaging are increasingly used for macromolecular structure determination in situ. Here we introduce a set of computational tools and resources designed to enable flexible approaches to subtomogram averaging. In particular, our tools simplify metadata handling, increase automation, and interface the Dynamo software package with the Warp-Relion-M pipeline. We provide a framework for ab initio and geometrical approaches to subtomogram averaging combining tools from these packages. We illustrate the power of working within the framework enabled by our developments by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles, and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we establish an open and collaborative online platform for sharing knowledge and tools related to cryo-electron tomography data processing. To this platform, we contribute a comprehensive guide to obtaining state-of-the-art results from EMPIAR-10164.


2003 ◽  
Vol 9 (S02) ◽  
pp. 1166-1167 ◽  
Author(s):  
C. Schwartz ◽  
D. Nicastro ◽  
M.S. Ladinsky ◽  
D. Mastronarde ◽  
E. O'Toole ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 353a-354a ◽  
Author(s):  
Elizabeth Villa ◽  
Miroslava Schaffer ◽  
Alexander Rigort ◽  
Felix Bauerlein ◽  
Juergen Plitzko ◽  
...  

2013 ◽  
Vol 19 (S2) ◽  
pp. 876-877
Author(s):  
M. Schaffer ◽  
E. Villa ◽  
B. Engel ◽  
Y. Fukuda ◽  
T. Laugks ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2021 ◽  
Author(s):  
Bryan S Sibert ◽  
Joseph Y Kim ◽  
Jie E Yang ◽  
Elizabeth R Wright

Whole-cell cryo-electron tomography (cryo-ET) is a powerful technique that can provide nanometer-level resolution of biological structures within the cellular context and in a near-native frozen-hydrated state. It remains a challenge to culture or adhere cells on TEM grids in a manner that is suitable for tomography while preserving the physiological state of the cells. Here, we demonstrate the versatility of micropatterning to direct and promote growth of both cultured and primary eukaryotic cells on TEM grids. We show that micropatterning is compatible with and can be used to enhance studies of host-pathogen interactions using respiratory syncytial virus infected BEAS-2B cells as an example. We demonstrate the ability to use whole-cell tomography of primary Drosophila neuronal cells to identify organelles and cytoskeletal stuctures in cellular axons and the potential for micropatterning to dramatically increase throughput for these studies. During micropatterning, cell growth is targeted by depositing extra-cellular matrix (ECM) proteins within specified patterns and positions on the foil of the TEM grid while the other areas remain coated with an anti-fouling layer. Flexibility in the choice of surface coating and pattern design make micropatterning broadly applicable for a wide range of cell types. Micropatterning is useful for studies of structures within individual cells as well as more complex experimental systems such as host-pathogen interactions or differentiated multi-cellular communities. Micropatterning may also be integrated into many downstream whole-cell cryo-ET workflows including correlative light and electron microscopy (cryo-CLEM) and focused-ion beam milling (FIB-SEM).


Sign in / Sign up

Export Citation Format

Share Document