host pathogen
Recently Published Documents


TOTAL DOCUMENTS

2287
(FIVE YEARS 645)

H-INDEX

101
(FIVE YEARS 13)

2022 ◽  
Vol 66 ◽  
pp. 11-20
Author(s):  
Hana Kammoun ◽  
Minhee Kim ◽  
Lukas Hafner ◽  
Julien Gaillard ◽  
Olivier Disson ◽  
...  

2022 ◽  
Vol 806 ◽  
pp. 150427
Author(s):  
Combe Marine ◽  
Cherif Emira ◽  
Charrier Amélie ◽  
Barbey Bruno ◽  
Chague Martine ◽  
...  

2022 ◽  
Vol 66 ◽  
pp. 102103
Author(s):  
Guillermo Bahr ◽  
Lisandro J. González ◽  
Alejandro J. Vila
Keyword(s):  

BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Stephen Meek ◽  
Tom Watson ◽  
Lel Eory ◽  
Gus McFarlane ◽  
Felicity J. Wynne ◽  
...  

Abstract Background Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. Results We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. Conclusions We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


mBio ◽  
2022 ◽  
Author(s):  
Camilo Gómez-Garzón ◽  
Jeffrey E. Barrick ◽  
Shelley M. Payne

Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Giovanni Cilia

Honey bee health is a very important topic that has recently raised the interest of researchers [...]


2022 ◽  
Vol 119 (2) ◽  
pp. e2116415119
Author(s):  
Filip Van Hauwermeiren ◽  
Nina Van Opdenbosch ◽  
Hanne Van Gorp ◽  
Nathalia de Vasconcelos ◽  
Geert van Loo ◽  
...  

Lethal toxin (LeTx)-mediated killing of myeloid cells is essential for Bacillus anthracis, the causative agent of anthrax, to establish systemic infection and induce lethal anthrax. The “LeTx-sensitive” NLRP1b inflammasome of BALB/c and 129S macrophages swiftly responds to LeTx intoxication with pyroptosis and secretion of interleukin (IL)-1β. However, human NLRP1 is nonresponsive to LeTx, prompting us to investigate B. anthracis host–pathogen interactions in C57BL/6J (B6) macrophages and mice that also lack a LeTx-sensitive Nlrp1b allele. Unexpectedly, we found that LeTx intoxication and live B. anthracis infection of B6 macrophages elicited robust secretion of IL-1β, which critically relied on the NLRP3 inflammasome. TNF signaling through both TNF receptor 1 (TNF-R1) and TNF-R2 were required for B. anthracis-induced NLRP3 inflammasome activation, which was further controlled by RIPK1 kinase activity and LeTx-mediated proteolytic inactivation of MAP kinase signaling. In addition to activating the NLRP3 inflammasome, LeTx-induced MAPKK inactivation and TNF production sensitized B. anthracis-infected macrophages to robust RIPK1- and caspase-8–dependent apoptosis. In agreement, purified LeTx triggered RIPK1 kinase activity- and caspase-8–dependent apoptosis only in macrophages primed with TNF or following engagement of TRIF-dependent Toll-like receptors. Consistently, genetic and pharmacological inhibition of RIPK1 inhibited NLRP3 inflammasome activation and apoptosis of LeTx-intoxicated and B. anthracis-infected macrophages. Caspase-8/RIPK3-deficient mice were significantly protected from B. anthracis-induced lethality, demonstrating the in vivo pathophysiological relevance of this cytotoxic mechanism. Collectively, these results establish TNF- and RIPK1 kinase activity–dependent NLRP3 inflammasome activation and macrophage apoptosis as key host–pathogen mechanisms in lethal anthrax.


2022 ◽  
Vol 102 (1) ◽  
pp. 411-454
Author(s):  
Bart Tummers ◽  
Douglas R. Green

The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.


2022 ◽  
pp. 104356
Author(s):  
Jonathan J. Giacomini ◽  
Nicholas Moore ◽  
Lynn S. Adler ◽  
Rebecca E. Irwin

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Gyan P. Mishra ◽  
Muraleedhar S. Aski ◽  
Tejas Bosamia ◽  
Shiksha Chaurasia ◽  
Dwijesh Chandra Mishra ◽  
...  

Dry root rot (Rhizoctonia bataticola) is an important disease of lentils (Lens culinaris Medik.).To gain an insight into the molecular aspects of host-pathogen interactions, the RNA-seq approach was used in lentils following inoculation with R.bataticola. The RNA-Seq has generated >450 million high-quality reads (HQRs) and nearly 96.97% were properly aligned to the reference genome. Very high similarity in FPKM (fragments per kilobase of exon per million mapped fragments) values (R > 0.9) among biological replicates showed the consistency of the RNA-Seq results. The study revealed various DEGs (differentially expressed genes) that were associated with changes in phenolic compounds, transcription factors (TFs), antioxidants, receptor kinases, hormone signals which corresponded to the cell wall modification enzymes, defense-related metabolites, and jasmonic acid (JA)/ethylene (ET) pathways. Gene ontology (GO) categorization also showed similar kinds of significantly enriched similar GO terms. Interestingly, of the total unigenes (42,606), 12,648 got assembled and showed significant hit with Rhizoctonia species. String analysis also revealed the role of various disease responsive proteins viz., LRR family proteins, LRR-RLKs, protein kinases, etc. in the host-pathogen interaction. Insilico validation analysis was performed using Genevestigator® and DEGs belonging to six major defense-response groups viz., defense-related enzymes, disease responsive genes, hormones, kinases, PR (pathogenesis related) proteins, and TFs were validated. For the first time some key miRNA targets viz. miR156, miR159, miR167, miR169, and miR482 were identified from the studied transcriptome, which may have some vital role in Rhizoctonia-based responses in lentils. The study has revealed the molecular mechanisms of the lentil/R.bataticola interactions and also provided a theoretical approach for the development of lentil genotypes resistant to R.bataticola.


Sign in / Sign up

Export Citation Format

Share Document